
Reqnroll

Reqnroll

May 10, 2024

CONTENTS

1 How to use the documentation 3
1.1 Quickstart . 3
1.2 Installation & Setup . 12
1.3 Guides . 21
1.4 Gherkin . 34
1.5 Automation Features . 46
1.6 Execution Features . 93
1.7 Extend Reqnroll . 108
1.8 Integrations . 116
1.9 IDE integrations . 131
1.10 Troubleshooting . 131
1.11 Frequently Asked Questions . 131
1.12 Samples . 131
1.13 Support . 132

i

ii

Reqnroll

Reqnroll is an open-source .NET test automation tool to practice Behavior Driven Development (BDD).

Reqnroll is a .NET port of Cucumber and it is based on the SpecFlow framework and code base. You can find more
information about the goal of the Reqnroll project and the motivations to create it on the Reqnroll website.

Reqnroll enables writing executable specifications for BDD using Gherkin, the widely-accepted feature file specification
format. With that you can define the requirements using Given-When-Then style scenarios and turn them to automated
tests in order to verify their implementation.

Reqnroll works on all major operating systems (Windows, Linux, macOS), on all commonly used .NET implemen-
tations (including .NET Framework 4.6.2+ and .NET 8.0). For executing the automated scenarios, Reqnroll can use
MsTest, NUnit or xUnit. On Reqnroll projects you can work using Visual Studio 2022, Visual Studio Core and Rider,
but you can also use Reqnroll without any IDE.

Since Reqnroll has been based on SpecFlow, you can use your SpecFlow knowledge to work with Reqnroll and it is
also very easy to port an existing SpecFlow project to Reqnroll. You can check out our detailed migration guide.

This documentation provides a comprehensive source of information about how to use Reqnroll. We also recommend
you to follow the news and the blog on the Reqnroll website.

CONTENTS 1

https://cucumber.io/docs/bdd/
https://cucumber.io/
https://www.specflow.org/
https://reqnroll.net/
https://cucumber.io/docs/gherkin/
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-with-mstest
https://nunit.org/
https://xunit.net/
https://reqnroll.net/

Reqnroll

2 CONTENTS

CHAPTER

ONE

HOW TO USE THE DOCUMENTATION

Documentation is in progress

We are currently in progress of reviewing and restructuring the documentation ported from SpecFlow. If you find any
glitches, please help with fixing it in our GitHub repository. Each page contains a small (edit) icon to perform quick
edits.

The documentation is structured in a way that you can find all relevant information quickly.

• In order to understand the concept of Reqnroll, we recommend checking out our Quickstart Guide.

• For setting up Reqnroll for your own project from scratch, you can find all details in the Installation & Setup
section.

• To migrate an existing SpecFlow project to Reqnroll, please follow our SpecFlow Migration Guide.

• The FEATURES block covers all the details of Reqnroll features. There are separate sections about

– the Gherkin format,

– features for writing automation code,

– features related to test execution, and

– extending the capabilities of Reqnroll.

1.1 Quickstart

This guide gives a quick introduction to Reqnroll.

Note: The guide uses Visual Studio 2022 as an IDE, but you can also follow it with other tools.

In this tutorial we demonstrate the usage of Reqnroll by implementing the price calculation module of an online in-
strument & accessories shop.

3

Reqnroll

1.1.1 Setup environment & get starting point

When you use Visual Studio 2022 for Reqnroll, please make sure you install the Reqnroll for Visual Studio extension.
See for details. Please make sure that the SpecFlow extension is disabled or removed for this Quickstart.

We prepared a simple starting point for this tutorial that you can find on GitHub: https://github.com/reqnroll/Quickstart.
Clone this project to your machine or download it as zip and extract it to a local folder.

Open the solution file (ReqnrollQuickstart.sln) in Visual Studio 2022 and let’s have a look at the content:

• The solution contains two projects: ReqnrollQuickstart.App is our application that we build,
ReqnrollQuickstart.Specs contains the automated specification for it, so basically the Reqnroll acceptance
tests. We will refer to this as Reqnroll project in this guide.

• The application contains one important class for now, the PriceCalculator, this is a very simple class, with
an unfinished method for calculating the price.

• The Reqnroll project has a single specification file (called feature file), the PriceCalculation.feature in the
Features folder, with our first scenario for the pricing module.

The Reqnroll project has been configured for using Reqnroll with MsTest. You can check the Setup Reqnroll Project
guide for more details about the installation and setup options.

Make sure you build your solution, otherwise the feature file editor might behave incorrectly in Visual Studio.

Once you have done this, you should see these files.

Listing 1: PriceCalculator.cs

namespace ReqnrollQuickstart.App;

public class PriceCalculator
{

// the item prices are hard coded for now
private readonly Dictionary<string, decimal> _priceTable = new()
{

{ "Electric guitar", 180.0 },
{ "Guitar pick", 1.5 }

};

public decimal CalculatePrice(Dictionary<string, int> basket)
{

throw new NotImplementedException();
}

}

Listing 2: PriceCalculation.feature

Feature: Price calculation

This feature is about calculating the basket price.

We work with fixed item prices for now:
* Electric guitar: $180
* Guitar pick: $1.5

Rule: The price for a basket with items can be calculated based on the item prices
(continues on next page)

4 Chapter 1. How to use the documentation

https://github.com/reqnroll/Quickstart
https://github.com/reqnroll/Quickstart/archive/refs/heads/main.zip

Reqnroll

(continued from previous page)

Scenario: Client has a simple basket
Given the client started shopping
And the client added 1 pcs of "Electric guitar" to the basket
When the basket is prepared
Then the basket price should be $180

1.1.2 Automating the first scenario

Run the tests from the Reqnroll project by opening the Test Explorer window (using the Test / Test Explorer menu
command) and run all tests. You can find more details about running the tests in the Executing Reqnroll Scenarios
guide.

The test execution reports a so called “undefined” state for our scenario. That means that Reqnroll has detected the
scenario, but we did not define how the scenario steps should be automated. We will do this now.

In order to define the steps, we need to create a step definition class. This can be done be copying the code snippet from
the test result output, but with Visual Studio we can also use the Define Steps dialog. You can access it by invoking the
“Define Steps. . . ” command from the feature file editor context menu or with the Ctrl+B, D keyboard shortcut from
the editor.

1.1.3 Generate step definition snippets

For now, we can simply accept the suggestion provided by the Define Steps dialog by clicking to the Create button.

This will create a new class PriceCalculationStepDefinitions in the StepDefinitions folder.

The class contains suggestions provided by the Visual Studio extension. In many cases the suggestions are just perfect
and you don’t need to change them. In some other cases, like in ours, you need to make some small corrections on the
generated names and types.

In our case we can provide more meaningful parameter names (instead of p0 and p1). You can see the updated parameter
names in the emphasized lines below.

After converting it to file-scoped namespace, the generated snippet looks like this.

Listing 3: PriceCalculationStepDefinitions.cs

namespace ReqnrollQuickstart.Specs.StepDefinitions;

[Binding]
public class PriceCalculationStepDefinitions
{

[Given("the client started shopping")]
public void GivenTheClientStartedShopping()
{

throw new PendingStepException();
}

[Given("the client added {int} pcs of {string} to the basket")]
public void GivenTheClientAddedPcsOfToTheBasket(int quantity, string product)
{

throw new PendingStepException();
(continues on next page)

1.1. Quickstart 5

Reqnroll

(continued from previous page)

}

[When("the basket is prepared")]
public void WhenTheBasketIsPrepared()
{

throw new PendingStepException();
}

[Then("the basket price should be ${float}")]
public void ThenTheBasketPriceShouldBe(decimal expectedPrice)
{

throw new PendingStepException();
}

}

As you can see, each step in our scenario has a corresponding method, called a step definition method. These are
currently unfinished, but guide us to provide the necessary automation code to verify our application. You can find
more information about step definitions in the Step Definitions guide.

Note: After adding step definitions or changing their expressions, you have to build the project in Visual Studio, so
that the changes are shown in the feature file editor.

1.1.4 Prepare fields for the step definitions

Let’s provide the automation code. First, let’s declare a few class-level fields.

Listing 4: PriceCalculationStepDefinitions.cs

namespace ReqnrollQuickstart.Specs.StepDefinitions;

[Binding]
public class PriceCalculationStepDefinitions
{

private readonly PriceCalculator _priceCalculator = new();
private readonly Dictionary<string, int> _basket = new();
private decimal _calculatedPrice;

[...]
}

These fields will be used for different purposes:

• The field _priceCalculator contains the module class that we would like to test.

• The _basket field will be used to collect the item/s the client puts in the basket, an item is a pair of product and
quantity.

• The _calculatedPrice field will contain the price calculated by the application, so that we can make assertions
for it.

These fields will provide data (or with other word state) for the step definitions. For now, all our step definition methods
were in the same class, therefore declaring them as simple class-level fields was enough. For learning more about
sharing data between step definition methods please check the Sharing Data between Bindings guide.

6 Chapter 1. How to use the documentation

Reqnroll

1.1.5 Automate steps

Now let’s provide the automation code for the steps. Our plan is the following:

• In the “Given” steps we will prepare the items in the basket,

• in the “When” step we invoke the CalculatePrice method of our price calculator class and save the result, and

• in the “Then” step we make sure that the saved price is the same as what we expected using an assertion.

After adding all these, our code looks like this (changes emphasized):

Listing 5: PriceCalculationStepDefinitions.cs

namespace ReqnrollQuickstart.Specs.StepDefinitions;

[Binding]
public class PriceCalculationStepDefinitions
{

private readonly PriceCalculator _priceCalculator = new();
private readonly Dictionary<string, int> _basket = new();
private decimal _calculatedPrice;

[Given("the client started shopping")]
public void GivenTheClientStartedShopping()
{

_basket.Clear();
_calculatedPrice = 0.0m;

}

[Given("the client added {int} pcs of {string} to the basket")]
public void GivenTheClientAddedPcsOfToTheBasket(int quantity, string product)
{

_basket.Add(product, quantity);
}

[When("the basket is prepared")]
public void WhenTheBasketIsPrepared()
{

_calculatedPrice = _priceCalculator.CalculatePrice(_basket);
}

[Then("the basket price should be ${float}")]
public void ThenTheBasketPriceShouldBe(decimal expectedPrice)
{

Assert.AreEqual(expectedPrice, _calculatedPrice);
}

}

Note: In our example we call methods of our application code from the step definitions. In other projects, you might
need to invoke REST HTTP requests there or interact with a web browser in the step definitions. Reqnroll does not
prescribe any particular automation model.

1.1. Quickstart 7

Reqnroll

1.1.6 Run tests and implement application code

We seem to have completed our automation code, still if we run our tests it shows an error.

Listing 6: Test Output

Test method ReqnrollQuickstart.Specs.Features.PriceCalculationFeature.
→˓ClientHasASimpleBasket threw exception:
System.NotImplementedException: The method or operation is not implemented.

Hint: What we have done so far was a test-first development that might be known to you from Test-Driven Development
(TDD). We automated the scenario (the “test”) before implementing the production code. You can use Reqnroll for
“test-after” development as well, but we encourage you to try test-first, because the automated tests can help to shape
the implementation and can help to avoid unnecessary or unused code.

Our test fails, because we haven’t implemented the price calculation module yet.

In our case it would be easy to implement the “final” version of the calculation module immediately, but currently
our scenario illustrates a very simple case, when we only add a single item of a product to the basket. For complex
or complicated system the “final” solution that you have in your mind might not be the best one, so it is better to
make it iteratively. Let’s imagine that we have a complex system, and therefore we will start with a temporary, basic
implementation for now.

Open the PriceCalculator class and add the emphasized lines from the code below.

Listing 7: PriceCalculator.cs

namespace ReqnrollQuickstart.App;

public class PriceCalculator
{

// the item prices are hard coded for now
private readonly Dictionary<string, decimal> _priceTable = new()
{

{ "Electric guitar", 180.0m },
{ "Guitar pick", 1.5m }

};

public decimal CalculatePrice(Dictionary<string, int> basket)
{

//TODO: complete the price calculation once we defined more scenarios
var item = basket.First();
return _priceTable[item.Key];

}
}

8 Chapter 1. How to use the documentation

Reqnroll

1.1.7 Add a new scenario and extend code

So it is time to add a new scenario where the client has multiple items in the basket. The scenario can be drafted as:

Listing 8: New scenario

Scenario: Client has multiple items in their basket
Given the client started shopping
And the client added

product	quantity
Electric guitar	1
Guitar pick	10

When the basket is prepared
Then the basket price should be $195.0

Where should we document this scenario?

This scenario is also related to price calculation, so we should include it to our PriceCalculation.feature file,
but let’s look at the current structure of the file. You can notice that it also contains a Rule block. Rules are optional
in Gherkin but they are very useful to group the scenarios by acceptance criteria. You can learn more about the Rule
keyword in the Rule page.

Currently we have a single rule: “The price for a basket with items can be calculated based on the item prices” and it
is clear that the new scenario also belongs to that, so we can just include it to the end of the rule block (that is in our
case the end of the file). Later we might need to introduce additional rules, like applying discounts.

Listing 9: PriceCalculation.feature

Feature: Price calculation
[...]
Rule: The price for a basket with items can be calculated based on the item prices

Scenario: Client has a simple basket
[...]

Scenario: Client has multiple items in their basket
Given the client started shopping
And the client added

product	quantity
Electric guitar	1
Guitar pick	10

When the basket is prepared
Then the basket price should be $195.0

Visual Studio shows most of the steps of the new scenario with default font color, except the “And the client added”
step. This is because all other steps have been already used in our other scenario as well, so we can automatically reuse
the automation we provided for them. Great! But the “And the client added” step is still undefined. This is a special
step as it contains an attached tabular parameter with the products and the quantities to be added to the basket. This
parameter is called Data Table in Gherkin and you can read more about it in the Data Tables section of our Gherkin
page.

Tip: You can easily find the step definition method of a defined step by invoking the Go To Definition command from
the context menu of the step. And once you are at the step definition, the Find Step Definition Usages command shows
where it was used.

1.1. Quickstart 9

Reqnroll

Actually even undefined step could have been rephrased in a way that we use only existing steps. We could have written:

Listing 10: Building basket with multiple items using existing steps

And the client added 1 pcs of "Electric guitar" to the basket
And the client added 10 pcs of "Guitar pick" to the basket

This way of phasing becomes cumbersome with multiple items. The one with the data table is nicer. But we need to
define it still.

We can use the Define Steps dialog as before, but to extend an existing step definition class with a new snippet, you need
to click on the Copy to clipboard button on the dialog and paste the snippet to our step definition class, for example
right after the other “Given” step dealing with basket addition.

The content of the data table is provided as a parameter of type DataTable. We can rename the parameter to
itemsTable.

Listing 11: PriceCalculationStepDefinitions.cs

[...]
public class PriceCalculationStepDefinitions
{

[...]

[Given("the client added {int} pcs of {string} to the basket")]
public void GivenTheClientAddedPcsOfToTheBasket(int quantity, string product)
{

_basket.Add(product, quantity);
}

[Given("the client added")]
public void GivenTheClientAdded(DataTable itemsTable)
{

throw new PendingStepException();
}

[When("the basket is prepared")]
public void WhenTheBasketIsPrepared()
{

_calculatedPrice = _priceCalculator.CalculatePrice(_basket);
}

[...]
}

For handling data tables you can find more information in the Data Table or DocString Arguments section of the step
definition guide. In this Quickstart we use one of the DataTable Helpers method to convert the table structure to a
strongly typed structure (a list of tuples).

Listing 12: PriceCalculationStepDefinitions.cs

[...]
public class PriceCalculationStepDefinitions
{

[...]
(continues on next page)

10 Chapter 1. How to use the documentation

Reqnroll

(continued from previous page)

[Given("the client added")]
public void GivenTheClientAdded(DataTable itemsTable)
{

var items = itemsTable.CreateSet<(string Product, int Quantity)>();
foreach (var item in items)
{

_basket.Add(item.Product, item.Quantity);
}

}

[...]
}

Let’s run the tests now. As we expected, the first scenario still passes, but the new one fails, because our basic imple-
mentation of the calculator does not support this case yet.

Listing 13: Test Output

Assert.AreEqual failed. Expected:<195.0>. Actual:<180.0>.

Now based on this example we can complete the calculation method.

Listing 14: PriceCalculator.cs

public class PriceCalculator
{

[...]

public decimal CalculatePrice(Dictionary<string, int> basket)
{

decimal price = 0;
foreach (var item in basket)
{

price += _priceTable[item.Key] * item.Value;
}
return price;

}
}

Now both of our tests pass!

1.1.8 Next Steps

Congratulations! You have completed our Quickstart tutorial and now you have a working Reqnroll automation solution
that you can experiment with.

If you get lost, you can check out our sample result in the completed branch of our Quickstart repository.

If you need inspirations how to extend the solution, here are a few ideas:

• Consider introducing a Currency class and create a argument transformation that recognizes currencies like
$195.0 and converts them to a currency value. You can find more about step argument transformations in Step
Argument Conversions.

1.1. Quickstart 11

https://github.com/reqnroll/Quickstart/tree/completed

Reqnroll

• You can replace the hard-coded product prices with “Given” steps that describe the available products and their
prices. You can also use the Background section for that.

• You can consider implementing a new rule that provides 10% discount when the basket value is over $200.
Separate their scenarios with the Rule keyword.

• If you are really adventureous, you can turn the app into a backed service that provides the price calculation as a
REST HTTP service. In this case that step definitions can make HTTP requests to test the service. In that case
you can use the BeforeScenario and AfterScenario hooks to start and stop the application.

Share your results at our Reqnroll discussion topic!

1.2 Installation & Setup

Reqnroll is distributed as a set of NuGet packages that you need to configure for your project, for most of the cases there
is no additional configuration required. It is also recommended to configure your Integrated Development Environment
(IDE, e.g. Visual Studio 2022) to work conveniently with Reqnroll.

1.2.1 Setup Reqnroll Project

This page guides you through setting up your Reqnroll project. It is also recommended to configure your Integrated
Development Environment (IDE, e.g. Visual Studio 2022) to work conveniently with Reqnroll. To set up your IDE,
please follow the Setup an IDE for Reqnroll guide first.

Choosing your test execution framework

Reqnroll uses test execution frameworks (MsTest, NUnit or xUnit) to run the tests. So first of all, you need to decide,
which one you would like to use. Reqnroll does not have a favorite one, so you should better choose the one you have
the most experience with. If you don’t have any preference, choose NUnit. The following table gives you a quick
comparison of the different supported execution frameworks.

Frame-
work

NuGet
pack-
age

Description

NUnit Reqnroll.
NUnit

Easy to use testing framework with respectful history. Supports test attachments and comes with
an extensive assertion library.

MsTestReqnroll.
MsTest

A widely supported framework by Microsoft. Supports test attachments and input parameters
through the TestContext class.

xU-
nit

Reqnroll.
xUnit

Simple and modern testing framework that reports the original names of the scenarios during
execution. It does not support test attachments and writing test execution output cannot be done
with Console.WriteLine, so it is less practical for integration tests.

Note: If you changed your mind and you would like to switch to another test execution framework, check out the How
to change the test execution framework used by Reqnroll guide. Using independent assertion frameworks, like Fluent
Assertions makes the change much easier.

12 Chapter 1. How to use the documentation

https://github.com/reqnroll/Reqnroll/discussions/6
https://nunit.org/
https://www.nuget.org/packages/Reqnroll.NUnit
https://www.nuget.org/packages/Reqnroll.NUnit
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-with-mstest
https://www.nuget.org/packages/Reqnroll.MsTest
https://www.nuget.org/packages/Reqnroll.MsTest
https://learn.microsoft.com/en-us/dotnet/api/microsoft.visualstudio.testtools.unittesting.testcontext?view=visualstudiosdk-2022
https://xunit.net/
https://xunit.net/
https://www.nuget.org/packages/Reqnroll.xUnit
https://www.nuget.org/packages/Reqnroll.xUnit
https://fluentassertions.com/
https://fluentassertions.com/

Reqnroll

Setting up a Reqnroll project

Once you have chosen your test execution framework, you need to setup the Reqnroll project. This can be done by
creating a new Reqnroll project or setup an existing .NET test project.

Depending on your situation, you can find the necessary setup instructions in one of the following sub-sections.

• Creating a new Reqnroll project from Visual Studio

• Creating a new Reqnroll project from console

• Setup an existing test project

Creating a new Reqnroll project from Visual Studio

If you have installed the Reqnroll Visual Studio integration, you can easily create a new Reqnroll project using the Add
new project wizard, by performing the following steps:

1. From the context menu of your solution in the Solution Explorer window select Add / New Project. . .

2. In the Add a new project dialog enter Reqnroll to the Search for templates text box.

3. Choose *Reqnroll Project” from the list and click on Next button.

4. Follow the wizard by choosing the name, the target framework and the test framework for the project.

As a result, a new Reqnroll project is created with a sample feature file and step definition class.

Build your project and execute the sample scenarios.

Creating a new Reqnroll project from console

Reqnroll projects can also be installed using the .NET template infrastructure and the dotnet new command.

First, you need to make sure that the Reqnroll templates are installed on your computer by running the dotnet new
install Reqnroll.Templates.DotNet:

Listing 15: .NET CLI

dotnet new install Reqnroll.Templates.DotNet

Once the templates have been installed, you can create a new project using the dotnet new reqnroll-project
command in a new directory.

Listing 16: Terminal

> mkdir MyReqnrollProject
> cd MyReqnrollProject
> dotnet new reqnroll-project
The template "Reqnroll Project Template" has been created successfully.

This command creates a Reqnroll project with NUnit for the latest .NET framework. In order to use other test execution
framework or .NET version, you can use the -t and the -f option. For the possible values and all options, you can
invoke dotnet new reqnroll-project --help.

1.2. Installation & Setup 13

Reqnroll

Listing 17: .NET CLI

dotnet new reqnroll-project --help

The following command creates a Reqnroll project with MsTest using .NET 6.0

Listing 18: .NET CLI

dotnet new reqnroll-project -t mstest -f net6.0

As a result, a new Reqnroll project is created with a sample feature file and step definition class.

You can go ahead and execute the sample scenarios from console.

To add further feature file or a Reqnroll configuration file, you can also use the reqnroll-feature and
reqnroll-config item templates. The following command adds a new feature file to the project named MyFeature.
feature.

Listing 19: .NET CLI

dotnet new reqnroll-feature -n MyFeature

Setup an existing test project

Reqnroll can also be configured for an existing test project. For that you need to add the NuGet package of your
chosen test execution framework to your project. (Check the NuGet package names above). The chosen test execution
framework has to match the framework used in your existing test project.

The following example adds the Reqnroll NuGet package for an MsTest project.

Listing 20: .NET CLI

dotnet add package Reqnroll.MsTest

Although the Reqnroll tests can be mixed with normal unit tests in the same .NET project, for the sake of clarity it is
recommended to create a separate project for your Reqnroll BDD scenarios.

1.2.2 Setup an IDE for Reqnroll

Tip: Reqnroll can be used without any IDE integration as well, so setting up the IDE is optional.

Setting up the Integrated Development Environment (IDE) integration for Reqnroll can add convenience and produc-
tivity features like:

• Adding new project elements, like feature files based on templates

• Syntax coloring of feature files

• Showing suggestions (completions) for Gherkin syntax keywords

• Navigating between steps and step definitions

• Adding step definition snippets to your codebase for undefined steps

This guide describes the setup steps for the following IDEs:

14 Chapter 1. How to use the documentation

https://learn.microsoft.com/en-us/visualstudio/test/create-a-unit-test-project?view=vs-2022

Reqnroll

• Setup Visual Studio 2022

• Setup Visual Studio Code

• Setup Rider

Setup Visual Studio 2022

In order to use Reqnroll with Visual Studio 2022, you need to install the Reqnroll for Visual Studio 2022 extension.

Warning: The Reqnroll with Visual Studio 2022 extension cannot work together with the SpecFlow for Visual
Studio 2022 extension, as they both process feature files. As the Reqnroll extension also supports SpecFlow projects,
you can remove the SpecFlow extension if you install the Reqnroll extension. Alternatively, you can disable the
SpecFlow extension for the time you work with Reqnroll.

1. Open Visual Studio 2022

2. From the Extensions menu, choose the Manage Extensions. . . command.

3. On the dialog, make sure that Online is selected from the list on the left and type Reqnroll to the Search text
box on the right top corner.

4. Choose the Reqnroll for Visual Studio 2022 from the list and click on the Download button.

5. Restart Visual Studio 2022.

For more details about the Reqnroll with Visual Studio extension, please check the Reqnroll Visual Studio integration
page.

Hint: The Reqnroll Visual Studio extension cannot be used for Visual Studio for Mac. On macOS we recommend
using Visual Studio Code.

Setup Visual Studio Code

For using Reqnroll with Visual Studio Code, you can choose from multiple available extensions. We recommend using
the Cucumber extension.

In order to use the navigation features of the extension, you should configure the location of your feature files and step
definition classes within your repository.

The following Visual Studio configuration shows a typical configuration.

Listing 21: .vscode/settings.json

{
"explorer.fileNesting.patterns": { // shows *.feature.cs files as nested items
"*.feature": "${capture}.feature.cs"

},
"files.exclude": { // excludes compilation result

"**/obj/": true,
"**/bin/": true,

},
"cucumber.glue": [// sets the location of the step definition classes
"MyReqnrollProject/**/*.cs",

(continues on next page)

1.2. Installation & Setup 15

https://go.reqnroll.net/vs2022-extension
https://marketplace.visualstudio.com/items?itemName=CucumberOpen.cucumber-official

Reqnroll

(continued from previous page)

],
"cucumber.features": [// sets the location of the feature files
"MyReqnrollProject/**/*.feature",

]
}

Setup Rider

Rider plugin is not available yet

The Reqnroll Rider plugin has not yet been ported and released. Please, come back later or help contribute to it in our
open-source GitHub project.

We recommend using the Visual Studio 2022 or the Visual Studio Code integration until the plugin will be ready. The
SpecFlow Rider plugin can also be used with limited capabilities.

Documentation is in progress

This documentation page is in progress. Please, come back later or help contribute to it in our open-source GitHub
project.

1.2.3 Configuration

Reqnroll can be setup simply by adding a NuGet package to your project and in the most of the cases there is no
additional configuration required.

The default configuration can be altered by adding a reqnroll.json configuration file to your project. An empty
configuration file can be added using the Add / New Item. . . command of Visual Studio 2022 or using the Reqnroll
.NET item template. The following example downloads the Reqnroll templates and adds a configuration file to the
project.

Listing 22: .NET CLI

dotnet new install Reqnroll.Templates.DotNet
dotnet new reqnroll-config

You can also start by adding the following empty configuration file to your project.

Listing 23: reqnroll.json

{
"$schema": "https://schemas.reqnroll.net/reqnroll-config-latest.json"

}

Tip: There is a JSON schema file available for reqnroll.json. By specifying the schema reference like in the exam-
ple above, most IDE (including Visual Studio and Visual Studio Code) provides auto completion and documentation
hints for the configuration file.

16 Chapter 1. How to use the documentation

https://github.com/reqnroll/Reqnroll.Rider
https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll

Reqnroll

In this guide we show examples for the most common situations when you need to modify the config file followed by
a full configuration reference.

• Use bindings from external projects

• Set the default feature file language

• Configuration file reference

Use bindings from external projects

In order to use bindings (step definitions, hooks or step argument transformations) from other projects (called external
projects) it is not enough to add a project reference to the Reqnroll project, but you need to also configure Reqnroll to
search bindings in these projects. See Bindings from External Assemblies for further details.

This can be achieved by listing the assembly name of the external project to the bindingAssemblies section of the
configuration file.

The following example registers the project SharedStepDefinitions as an external binding assembly.

Listing 24: reqnroll.json

{
"$schema": "https://schemas.reqnroll.net/reqnroll-config-latest.json",

"bindingAssemblies": [
{
"assembly": "SharedStepDefinitions"

}
]

}

Set the default feature file language

The keywords in the feature files are available in many many natural languages matching the language your business is
using.

In order to use the keywords in a language other than English, you can either use the Gerkin #language directive in
every feature file or specify a default language in the Reqnroll configuration.

The following example sets the default feature language to Hungarian:

Listing 25: reqnroll.json

{
"$schema": "https://schemas.reqnroll.net/reqnroll-config-latest.json",

"language": {
"feature": "hu-HU"

}
}

1.2. Installation & Setup 17

Reqnroll

Configuration file reference

The following configuration sections are available for reqnroll.json.

language

Use this section to define the default language for feature files and other language-related settings. For more details on
language settings, see Feature Language.

Set-
ting

Value Description

fea-
ture

culture
name
(en-US)

The default language of feature files added to the project. We recommend using specific culture
names (e.g.: en-US) rather than generic (neutral) cultures (e.g.: en). Default: en-US

bind-
ing

culture
name
(en-US)

Specifies the culture to be used to execute binding methods and convert step arguments. If not
specified, the feature language is used. Default: not specified

generator

Use this section to define test generation options.

Setting Value Description
allowDe-
bugGenerat-
edFiles

true/falseBy default, the debugger is configured to step through the generated code. This helps
you debug your feature files and bindings (see Debugging Tests). Disabled this option by
setting this attribute to true. Default: false

al-
lowRowTests

true/falseDetermines whether “row tests” should be generated for scenario outlines. This setting
is ignored if the test execution framework does not support row based testing. Default:
true

addNonParal-
lelizableMark-
erForTags

List
of
tags

Defines a set of tags, any of which specify that a feature should be excluded from running
in parallel with any other feature. See Parallel Execution. Default: empty

18 Chapter 1. How to use the documentation

Reqnroll

runtime

Use this section to specify various test execution options.

Setting Value Description
missingOr-
Pending-
StepsOut-
come

Pending /
Inconclusive /
Ignore / Error

Determines how Reqnroll behaves if a step binding is not implemented or pend-
ing. See Test Results. Default: Pending

obsoleteBe-
havior

None / Warn
/ Pending /
Error

Determines how Reqnroll behaves if a step binding is marked with [Obsolete]
attribute. Default: Warn

stopAt-
FirstError

true/false Determines whether the execution of the scenario should stop when encounter-
ing the first error, or whether it should attempt to try and match subsequent steps
(in order to detect missing steps). Default: false

trace

Use this section to determine the Reqnroll trace output.

Setting Value Description
stepDef-
inition-
Snippet-
Style

CucumberExpressionAttribute
/
RegexAttribute

Specifies the default step definition style. Default:
CucumberExpressionAttribute

colored-
Output

true/false Determine whether Reqnroll should color the test result output. See Color Test
Result Output for more details. You can override this setting to disable color (e.g.
on build servers), with the environment variable NO_COLOR=1 Default: false

bindingAssemblies

This section can be used to configure additional assemblies that contain bindings (step definitions, hooks or step argu-
ment transformations). See Bindings from External Assemblies for further details.

The assembly of the Reqnroll project (the project containing the feature files) is automatically included. The binding
assemblies must be placed in the output folder (e.g. bin/Debug) of the Reqnroll project, for example by adding a
reference to the assembly from the project.

The following example registers an additional binding assembly (SharedStepDefinitions.dll).

Listing 26: reqnroll.json

{
"$schema": "https://schemas.reqnroll.net/reqnroll-config-latest.json",

"bindingAssemblies": [
{
"assembly": "SharedStepDefinitions"

}
(continues on next page)

1.2. Installation & Setup 19

Reqnroll

(continued from previous page)

]
}

The bindingAssemblies section can contain multiple JSON objects (one for each assembly), with the following
settings.

Setting Value Description
assembly assembly name The name of the assembly containing bindings (without .dll).

1.2.4 Compatibility

Supported operating systems

SpecSync is supported on all common operating systems that support .NET, including

• Windows

• Linux

• MacOS

.NET Versions

• .NET Framework 4.6.2

• .NET Framework 4.7.2

• .NET Framework 4.8.1

• .NET 6.0

• .NET 7.0

• .NET 8.0

Note: Reqnroll can also be installed on any .NET frameworks that supports .NET Standard 2.0, including .NET Core
3.1 and .NET 5.0, but please note that these frameworks are out of support already.

Visual Studio

• Visual Studio 2022 (Workloads: ASP.NET and web development or .NET Desktop environment or .NET Core
cross- platform development)

20 Chapter 1. How to use the documentation

Reqnroll

Test Execution Frameworks

• NUnit

• MsTest

• xUnit

1.3 Guides

This part contains details of the following topics.

1.3.1 How to change the test execution framework used by Reqnroll

Documentation is in progress

This documentation page is in progress. Please come back later or help contributing to it in out open-source GitHub
project.

1.3.2 Migrating from SpecFlow

Reqnroll has been created based on the open-source codebase of SpecFlow, therefore it provides a high level of compat-
ibility with SpecFlow. We can generally say that everything that has worked with SpecFlow also works with Reqnroll,
but some names and the namespaces have been modified.

The key differences between SpecFlow and Reqnroll are the following:

• All packages have been renamed from SpecFlow.* to Reqnroll.*. E.g. Reqnroll.MsTest.

• The namespace of the classes has been changed from TechTalk.SpecFlow to Reqnroll and some classes that
had SpecFlow in their name (e.g. ISpecFlowOutputHelper) have been renamed accordingly. An optional
SpecFlow Compatibility Package has been created to migrate without changing all namespaces, see below.

• There is a new DataTable alias for the Table class to better match Gherkin terminology. The Table class can
still be used.

• The main extension methods of the Assist helpers have been moved to the Reqnroll namespace, so that they
can be used without an additional namespace using statement. The helpers are now referred to as DataTable
Helpers.

• The Reqnroll Visual Studio extension has been reworked in a way that it can handle both SpecFlow and Reqnroll
projects (also for .NET 8.0).

• The integration plugins that have been managed by SpecFlow have been also ported to work with Reqnroll (e.g.
Reqnroll.Autofac). See Available Plugins.

• The “SpecFlow.Actions” plugins that provide a ready-to-use support for different automation technologies
(e.g. Selenium) are ported as Reqnroll.SpecFlowCompatibility.Actions.* packages (e.g. Reqnroll.
SpecFlowCompatibility.Actions.Selenium).

This article provides you a step-by-step guidance to migrate SpecFlow projects to Reqnroll. There are two migration
paths you can choose from:

1. Migrate with the Reqnroll SpecFlow Compatibility Package: requires minimal change in the codebase.

1.3. Guides 21

https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll

Reqnroll

2. Migrate with namespace changes: requires simple changes, mostly doable with search-and-replace.

It is also worth mentioning that Reqnroll is based on the SpecFlow v4 codebase, so if you migrate from SpecFlow v3,
you should consider the Breaking changes since SpecFlow v3 section as well.

Migrate with the Reqnroll SpecFlow Compatibility Package

Reqnroll contains a SpecFlow Compatibility Package (Reqnroll.SpecFlowCompatibility) that allows to use the
Reqnroll classes using the SpecFlow namespace (TechTalk.SpecFlow). This allows a quick migration of SpecFlow
project that requires minimal code changes. Later the migrated project can be incrementally transformed to use the
Reqnroll namespaces.

In order to migrate a SpecFlow project using the SpecFlow compatibility package, you need to perform the following
steps.

Step 1 - Change NuGet packages

You need to remove the SpecFlow NuGet package references from the project and replace them with the Reqnroll ones.
This can be done with the Visual Studio NuGet package manager or by modifying the project file in an editor.

• Packages to be removed:

– any package where the name starts with SpecFlow, e.g. SpecFlow or SpecFlow.MsTest

– the CucumberExpressions.SpecFlow.* packages (Reqnroll has built-in Cucumber Expression support)

• Packages to add:

– The Reqnroll package according to the test execution framework you use: Reqnroll.NUnit, Reqnroll.
MsTest or Reqnroll.xUnit

– The SpecFlow Compatibility package: Reqnroll.SpecFlowCompatibility

– If you have used any of the SpecFlow.Actions.* package (e.g. SpecFlow.Actions.Selenium),
you need to add the matching Reqnroll.SpecFlowCompatibility.Actions.* package (Reqnroll.
SpecFlowCompatibility.Actions.Selenium).

After the change, your project file might look like this:

Listing 27: C# Project File (.csproj)

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>net6.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<!-- test project dependencies (MsTest) -->
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.8.0" />
<PackageReference Include="MSTest.TestAdapter" Version="3.2.0" />
<PackageReference Include="MSTest.TestFramework" Version="3.2.0" />

<!-- Reqnroll -->
<PackageReference Include="Reqnroll.MsTest" Version="1.0.0" />
<PackageReference Include="Reqnroll.SpecFlowCompatibility" Version="1.0.0" />

</ItemGroup>
(continues on next page)

22 Chapter 1. How to use the documentation

https://www.nuget.org/packages/Reqnroll.SpecFlowCompatibility
https://www.nuget.org/packages/Reqnroll.NUnit
https://www.nuget.org/packages/Reqnroll.MsTest
https://www.nuget.org/packages/Reqnroll.MsTest
https://www.nuget.org/packages/Reqnroll.xUnit
https://www.nuget.org/packages/Reqnroll.SpecFlowCompatibility

Reqnroll

(continued from previous page)

[...]
</Project>

Tip: For most of the SpecFlow projects this is the only change you need to do and your project is ready to run with
Reqnroll.

Step 2 - Review code compatibility

Build the project with the changed package references. If the project builds successfully, you can move on to the next
step.

If you see build errors, they might belong to one of the following categories.

1. If the C# compiler complains of a missing TechTalk.SpecFlow.<component> namespace or a missing class, it
means that the code has used some infrastructural elements of SpecFlow. For these files, simply add a namespace
using for the related Reqnroll namespace: using Reqnroll.<component>. This might happen for special hook
classes or step argument transformations.

2. Any other compilation error might be caused by the breaking changes between SpecFlow v3 and v4. Please
check the section Breaking changes since SpecFlow v3 below for the fixes.

After fixing these issues, your project should compile successfully.

Step 3 - Review SpecFlow App.config settings (if applicable)

Reqnroll uses a JSON configuration file named reqnroll.json, but it is also compatible with the specflow.json
configuration files. So if you have used specflow.json or have not used custom SpecFlow configuration, you can
move on to the next step.

If you have used the legacy App.config file to configure SpecFlow, your configuration is also handled by the SpecFlow
Compatibility package, except the configuration section declaration. So you need to change only one line in your
configuration file as highlighted below.

Listing 28: App.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<configSections>
<section name="specFlow" type="Reqnroll.SpecFlowCompatibility.ReqnrollPlugin.

→˓ConfigurationSectionHandler, Reqnroll.SpecFlowCompatibility.ReqnrollPlugin" />
</configSections>
<specFlow>
<language feature="hu-HU" />
<stepAssemblies>
<stepAssembly assembly="ExternalStepDefs" />

</stepAssemblies>
</specFlow>

</configuration>

1.3. Guides 23

Reqnroll

Step 4 - Review execution compatibility

Now it is time to run your tests. If the tests were passing before, they should be still passing, there is no reported
compatibility issue.

If you run into any problems, it might be caused by the breaking changes between SpecFlow v3 and v4. Please check
the section Breaking changes since SpecFlow v3 below for the fixes.

Congratulations you are done!

Our more complex sample application, ReqOverflow has been also migrated from SpecFlow. You can check what
changes we had to do in order to get it working with Reqnroll using the SpecFlow compatibility package. See the
changes on GitHub.

Migrate with namespace changes

Thanks to the high level of compatibility, it is also easy to perform a full migration from SpecFlow projects that requires
simple changes, it is mostly doable with search-and-replace.

In order to migrate a SpecFlow project, you need to perform the following steps.

Step 1 - Change NuGet packages

You need to remove the SpecFlow NuGet package references from the project and replace them with the Reqnroll ones.
This can be done using the Visual Studio NuGet package manager or by modifying the project file in an editor.

• Packages to be removed:

– any package where the name starts with SpecFlow, e.g. SpecFlow or SpecFlow.MsTest

– the CucumberExpressions.SpecFlow.* packages (Reqnroll has built-in Cucumber Expression support)

• Packages to add:

– The Reqnroll package according to the test execution framework you use: Reqnroll.NUnit, Reqnroll.
MsTest or Reqnroll.xUnit

– If you have used any of the SpecFlow.Actions.* package (e.g. SpecFlow.Actions.Selenium),
you need to add the matching Reqnroll.SpecFlowCompatibility.Actions.* package (Reqnroll.
SpecFlowCompatibility.Actions.Selenium).

After the change, your project file might look like this:

Listing 29: C# Project File (.csproj)

<Project Sdk="Microsoft.NET.Sdk">

<PropertyGroup>
<TargetFramework>net6.0</TargetFramework>

</PropertyGroup>

<ItemGroup>
<!-- test project dependencies (MsTest) -->
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.8.0" />
<PackageReference Include="MSTest.TestAdapter" Version="3.2.0" />
<PackageReference Include="MSTest.TestFramework" Version="3.2.0" />

(continues on next page)

24 Chapter 1. How to use the documentation

https://github.com/reqnroll/Sample-ReqOverflow
https://github.com/reqnroll/Sample-ReqOverflow/compare/before-migration...migration-with-compatiblity-package
https://www.nuget.org/packages/Reqnroll.NUnit
https://www.nuget.org/packages/Reqnroll.MsTest
https://www.nuget.org/packages/Reqnroll.MsTest
https://www.nuget.org/packages/Reqnroll.xUnit

Reqnroll

(continued from previous page)

<!-- Reqnroll -->
<PackageReference Include="Reqnroll.MsTest" Version="1.0.0" />

</ItemGroup>
[...]

</Project>

Step 2 - Replace namespaces

Now open the project in Visual Studio or in a code editor and replace all usages of the TechTalk.SpecFlow namespace
to Reqnroll. This can be done with a search-and-replace operation in your editor. Make sure you perform the replace
in all files (usual shortcut: Shift-Ctrl-H).

• Search for: TechTalk.SpecFlow, enable Match case and Match whole word

• Replace with: Reqnroll

This will replace the namespace in namespace usings (e.g. using TechTalk.SpecFlow;) or fully qualified class
names (e.g. TechTalk.SpecFlow.ScenarioContext).

Step 3 - Review code compatibility

Build the project with the changed package references. If the project builds successfully, you can move on to the next
step.

If you see build errors, they might belong to one of the following categories.

1. You might have used a SpecFlow class that had SpecFlow in the name. The most common example is
ISpecFlowOutputHelper. Replace these accordingly (e.g. IReqnrollOutputHelper). If you use them ex-
tensively, you can also use a “replace in all files” function.

2. Any other compilation error might be caused by the breaking changes between SpecFlow v3 and v4. Please
check the section Breaking changes since SpecFlow v3 below for the fixes.

After fixing these issues, your project should compile successfully.

Step 4 - Migrate config settings

If you have not used custom SpecFlow configuration, you can move on to the next step.

Reqnroll uses a JSON configuration file named reqnroll.json. The format is compatible with the specflow.
json configuration file format, so the migration is simple, you just need to rename the file to reqnroll.json. It is
recommended to set the JSON schema reference, so that your editor offers completion for the settings. The official
schema reference is https://schemas.reqnroll.net/reqnroll-config-latest.json, which you can use like
the example shows below.

Listing 30: reqnroll.json

{
"$schema": "https://schemas.reqnroll.net/reqnroll-config-latest.json",

"language": {
"feature": "hu-HU"

},
(continues on next page)

1.3. Guides 25

Reqnroll

(continued from previous page)

"bindingAssemblies": [
{
"assembly": "ExternalStepDefs"

}
]

}

There are two settings in the reqnroll.json that have different name, although the names used in SpecFlow are also
accepted. It is recommended though to update these as well:

• The stepAssemblies section has been renamed to bindingAssemblies. See bindingAssemblies.

• The bindingCulture/name setting has been moved to the language section as language/binding. See lan-
guage.

If you have used the legacy App.config file to configure SpecFlow, you need to migrate the settings to reqnroll.
json based on our Configuration reference.

Step 5 - Review execution compatibility

Now it is time to run your tests. If the tests were passing before, they should be still passing, there is no reported
compatibility issue.

If you run into any problems that might be caused by the breaking changes between SpecFlow v3 and v4. Please check
the section Breaking changes since SpecFlow v3 below for the fixes.

Congratulations you are done!

Our more complex sample application, ReqOverflow has been also migrated from SpecFlow. You can check what
changes we had to do in order to get it working with Reqnroll with a complete migration. See the changes on GitHub.

Breaking changes since SpecFlow v3

As Reqnroll is based on SpecFlow v4, if you migrate from SpecFlow v3, you might encounter problems that are caused
by the breaking changes between SpecFlow v3 and v4. The following list contains the most important breaking changes
and the suggestions to resolve them.

Cucumber Expressions support, compatibility of existing expressions

Reqnroll supports Cucumber Expressions natively for step definitions. This means that whenever you define a step
using the [Given], [When] or [Then] attribute, you can either provide a regular expression for it as a parameter or a
cucumber expression.

Most of your existing regex step definitions will be compatible, because they are either properly recognized as regex or
the expression works the same way with both expression types (e.g. simple text without parameters).

In case your regular expression is wrongly detected as cucumber expression, you can always force to use regular ex-
pression by specifying the regex start/end markers (^/$).

[When(@"^this expression is treated as a regex$")]

There are a few special cases listed below.

26 Chapter 1. How to use the documentation

https://github.com/reqnroll/Sample-ReqOverflow
https://github.com/reqnroll/Sample-ReqOverflow/compare/before-migration...full-migration

Reqnroll

Invalid expressions after upgrade

In some cases you may see an error after upgrading to the Reqnroll. For example if you had a step definition with an
attribute like:

[When(@"I \$ something")]

This Cucumber Expression has a problem ...

In this case the problem is that Reqnroll wrongly identified your expression as a cucumber expression.

Solution 1: Force the expression to be a regular expression by specifying the regex start/end markers (^/$):

[When(@"^I \$ something$")]

If you have many of such step definitions, you can force all of them to be treated as regex by including the start/end
markers using Visual Studio “Find and Replace in Files” (Ctrl+Alt+H) option:

• Set search text to \[(Given|When|Then)\((@?)"(.*?)"\)\]

• Set replacement text to [$1($2"^$3$$")]

• Check “Use regular expressions” setting

• Click on “Replace All”

This will add the markers to all step definition attributes.

Solution 2: Change the expression to be a valid cucumber expression. For the example above, you need to remove the
masking character (\), because the $ sign does not have to be masked in cucumber expressions:

[When("I $ something")]

Expression matching problems during test execution

In some very special cases it can happen that the expression is wrongly identified as cucumber expression, but you only
get the step binding error during test execution (usually No matching step definition found error), because the
expression is valid as regex and as cucumber expression as well, but with different meaning.

For example if you had a step definition that matches the step When I a/b something, it will be considered as
a cucumber expression, but in cucumber expressions, the / is used for alternation (so it matches either When I a
something or When I b something).

[When(@"I a/b something")]

Solutions: You can apply the same solutions as above: either force it to be a regular expression by specifying the regex
start/end markers or make it a valid cucumber expression.

For the latter case, you would need to mask the / character:

[When(@"I a\/b something")]

1.3. Guides 27

Reqnroll

Cucumber Expression step definition skeletons

Reqnroll will by default generate step definition skeletons (snippets) for the new steps. So in case you write a new step
as

When I have 42 cucumbers in my belly

Reqnroll will suggest the step definition to be:

[When("I have {int} cucumbers in my belly")]
public void WhenIHaveCucumbersInMyBelly(int p0)
...

If you would like to use only regular expressions in your project, you either have to fix the expression manually, or you
can configure Reqnroll to generate skeletons with regular expressions. You can achieve this with the following setting
in the reqnroll.json file:

Listing 31: reqnroll.json

{
"$schema": "https://schemas.reqnroll.net/reqnroll-config-latest.json",
"trace": {
"stepDefinitionSkeletonStyle": "RegexAttribute"

}
}

Removed calling other steps with string

The SpecFlow v3 functionality of calling a step from a step like this is not available in Reqnroll (has been removed in
SpecFlow v4):

Listing 32: Step Definition Class

[Binding]
public class CallingStepsFromStepDefinitionSteps : Steps
{
[Given(@"the user (.*) exists")]
public void GivenTheUserExists(string name) { ... }

[Given(@"I log in as (.*)")]
public void GivenILogInAs(string name) { ... }

[Given(@"(.*) is logged in")]
public void GivenIsLoggedIn(string name)
{
Given(string.Format("the user {0} exists", name));
Given(string.Format("I log in as {0}", name));

}

This is not possible anymore, as the methods are now removed.

If you use this feature, you have two options:

• refactor to the Driver Pattern

28 Chapter 1. How to use the documentation

Reqnroll

• call the methods directly

Complete changelog of SpecFlow v4

Breaking Changes:

• Removed the ability to call steps from steps via string

• Removed .NET Core 2.1 support (min .NET Core version: 3.1)

• Removed .NET Framework 4.6.1 support (min .NET Framework version: 4.6.2)

• Bindings declared as async void are not allowed. Use async Task instead.

Features:

• Add an option to colorize test result output

• Support for using Cucumber Expressions for step definitions.

• Support Rule tags (can be used for hook filters, scoping and access through ScenarioInfo.CombinedTags)

• Support for async step argument transformations.

• Support for ValueTask and ValueTask binding methods (step definitions, hooks, step argument transformations)

• Rules now support Background blocks

• Collect binding errors (type load, binding, step definition) and report them as exception when any of the tests are
executed.

Changes:

• Existing step definition expressions detected to be either regular or cucumber expression.

• Default step definition skeletons are generating cucumber expressions.

• ScenarioInfo.ScenarioAndFeatureTags has been deprecated in favor of ScenarioInfo.CombinedTags.
Now both contain rule tags as well.

• AggregateExceptions thrown by async StepDefinition methods are no longer consumed; but passed along to the
test host.

1.3.3 Using the Driver Pattern

The Driver Pattern is simply an additional layer between your step definitions and your automation code.

Over the years, we noticed that a good practice to organize your bindings and automation code is to keep the code in
the bindings very short (around 10 lines) and easy understandable.

This gives you following benefits:

• easier to maintain your test automation code
As you split your code into multiple parts, it gets easier to maintain

• easy to reuse methods in different step definitions or combine multiple steps into a single step
We often see, a group of steps that are in a lot of Scenarios. As you have now the automation code in separate
classes, chaining the method calls is really easy.

• easier to read step definitions
This makes it possible, that also non- technical people can understand what is happening in a step definition.
This makes your life in bigger projects easier, because nobody will remember what every single step is doing.

The Driver pattern is heavily using Context- Injection to connect the multiple classes together.

1.3. Guides 29

Reqnroll

Example

In this example you see how the code looks before and after refactoring with the Driver pattern.

Before:

This is some automation code that uses the Page Object Model and checks if some WebElements are existing.

[Then(@"it is possible to enter a '(.*)' with label '(.*)'")]
public void ThenItIsPossibleToEnterAWithLabel(string inputType, string expectedLabel)
{

var submissionPageObject = new SubmissionPageObject(webDriverDriver);

switch (inputType.ToUpper())
{

case "URL":
submissionPageObject.UrlWebElement.Should().NotBeNull();
submissionPageObject.UrlLabel.Should().Be(expectedLabel);
break;

case "TYPE":
submissionPageObject.TypeWebElement.Should().NotBeNull();
submissionPageObject.TypeLabel.Should().Be(expectedLabel);
break;

default:
throw new NotImplementedException(inputType + " not implemented");

}
}

After:

With moving the automation code into a driver class, we could reduce the number of lines in the step definition to one.
Also we can now use a method-name (CheckExistenceOfInputElement), that is understandable by everybody in
your team.

To get an instance of the driver class (SubmissionSteps), we are using the Context- Injection Feature of Reqnroll.

[Binding]
public class SubmissionSteps
{

private readonly SubmissionPageDriver submissionPageDriver;

public SubmissionSteps(SubmissionPageDriver submissionPageDriver)
{

this.submissionPageDriver = submissionPageDriver;
}

(continues on next page)

30 Chapter 1. How to use the documentation

Reqnroll

(continued from previous page)

[Then(@"it is possible to enter a '(.*)' with label '(.*)'")]
public void ThenItIsPossibleToEnterAWithLabel(string inputType, string expectedLabel)
{

submissionPageDriver.CheckExistenceOfInputElement(inputType, expectedLabel);
}

// ...

public class SubmissionPageDriver
{

// ...

public void CheckExistenceOfInputElement(string inputType, string expectedLabel)
{

var submissionPageObject = new SubmissionPageObject(webDriverDriver);

switch (inputType.ToUpper())
{

case "URL":
submissionPageObject.UrlWebElement.Should().NotBeNull();
submissionPageObject.UrlLabel.Should().Be(expectedLabel);
break;

case "TYPE":
submissionPageObject.TypeWebElement.Should().NotBeNull();
submissionPageObject.TypeLabel.Should().Be(expectedLabel);
break;

default:
throw new NotImplementedException(inputType + " not implemented");

}
}

// ...

1.3. Guides 31

Reqnroll

Further Resources

• http://leitner.io/2015/11/14/driver-pattern-empowers-your-specflow-step-definitions

1.3.4 Using Page Object Model

The Page Object Model is a pattern, that is often used to abstract your Web UI with Selenium to easier automate it.

So to automate following HTML snippet

<input id="txtUrl" name="Url" type="text" value="">

you have following class to control it

public class PageObject
{

public IWebElement TxtUrl {get;}
}

When you are working with Selenium, you are always working with WebElements to access the different elements on
your Website. You can find them with the FindElement and FindElements methods on the WebDriver class.
If you are always using these methods directly in your automation code, you will get a lot of code duplication. This is
the moment when you should start using the Page Object Model. You hide the calls to the FindElement(s) methods
in a class.

This has following advantages:

• the classes are easier reusable

• if you need to change an id of your element, you need to change only one place

• your bindings are less dependent on your HTML structure

Simple Implementation

HTML:

<input id="txtUrl" name="Url" type="text" value="">

Code:

public class PageObject
{

private IWebDriver _webDriver;

public PageObject(IWebDriver webDriver)
{

_webDriver = webDriver;
}

public IWebElement txtUrl => _webDriver.FindElement(By.Id("txtUrl"));
}

You pass your WebDriver instance via constructor, and always when you access the TxtUrl property, the WebDriver
searches on the whole page for an element with the id txtUrl. There is no caching involved.

32 Chapter 1. How to use the documentation

http://leitner.io/2015/11/14/driver-pattern-empowers-your-specflow-step-definitions

Reqnroll

Implementation with Caching

HTML:

<input id="txtUrl" name="Url" type="text" value="">

Code:

public class PageObject
{

private IWebDriver _webDriver;
private Lazy<IWebElement> _txtUrl;

public PageObject(IWebDriver webDriver)
{

_webDriver = webDriver;
_txtUrl = new Lazy<IWebElement>(() => _webDriver.FindElement(By.Id("txtUrl")));

}

public IWebElement txtUrl => _txtUrl.Value;
}

Again You pass your WebDriver instance via constructor. In this case we are using Lazy as a easy way to cache the
result of the FindElement method.
Only the first call to the txtUrl property, triggers a call to the FindElement function. All subsequent calls, will return
the same value as before. This will save you some time in execution of your automation code, as the WebDriver needs
to do search less often for the same element.

If you use a caching strategy like that, be careful with your lifetime of your page objects and your page. Don’t reuse an
old instance of your page model, if the page changed in the meantime.

Implementation with Hierarchy

HTML:

<div class='A'>
<div class='B'/>

</div>
<div class='B'>
</div>

Code:

public class ParentPageObject
{

private IWebDriver _webDriver;

public ParentPageObject(IWebDriver webDriver)
{

_webDriver = webDriver;
}

public IWebElement WebElement => _webDriver.FindElement(By.ClassName("A"));

(continues on next page)

1.3. Guides 33

https://docs.microsoft.com/en-us/dotnet/api/system.lazy-1

Reqnroll

(continued from previous page)

public ChildPageObject Child => new ChildPageObject(WebElement);
}

public class ChildPageObject
{

private IWebElement _webElement;
private Lazy<IWebElement> _txtUrl;

public ChildPageObject(IWebElement webElement)
{

_webElement = webElement;
}

public IWebElement WebElement => _webElement.FindElement(By.ClassName("B"));
}

In this example we have a slightly adjusted HTML document to work with. There are two div- elements with the same
class B, but we only want the PageObject for the div- element with the class A and the child.

If we would use the same WebDriver.FindElement method we would get the div- element that is on the same level
as the A div.
But every WebElement has also the FindElement(s)- methods. This enable you to query the elements only in a part
of your whole HTML DOM.
To do that we are passing this time the parent- WebElement to the ChildPageObject class to only search for the
element with the class B within the A- div.

This concept enables you to structure your PageObjects in a similar way you have your HTML DOM structure.

Further resources

• https://www.browserstack.com/guide/page-object-model-in-selenium

• https://www.selenium.dev/documentation/en/guidelines_and_recommendations/page_object_models/

• https://martinfowler.com/bliki/PageObject.html

1.4 Gherkin

The feature files used by Reqnroll are in Gherkin format. This format is specified and maintained by the Cucumber
project.

In this documentation we provide a few important details about the format and how they work with Reqnroll. For a full
language reference please check the Cucumber documentation.

34 Chapter 1. How to use the documentation

https://www.browserstack.com/guide/page-object-model-in-selenium
https://www.selenium.dev/documentation/en/guidelines_and_recommendations/page_object_models/
https://martinfowler.com/bliki/PageObject.html
https://cucumber.io/docs/gherkin/
https://cucumber.io/
https://cucumber.io/docs/gherkin/

Reqnroll

1.4.1 Feature Files

The feature files are the files that contain the BDD executable specification.

The feature files are plain text files with the .feature extension. You can put feature files in any folders within the
Reqnroll project, but the convention is to have a Features folder in your project and put the feature files in that folder,
optionally in sub-folders.

The format of the feature files is called Gherkin that is specified and maintained by the Cucumber project. For a full
language reference please check the Cucumber documentation.

The following example shows a feature file that describes the addition functionality of a calculator.

Listing 33: Calculator.feature

Feature: Calculator

Simple calculator for adding two numbers

Rule: Add should calculate the sum of the entered numbers

@mytag
Scenario: Add two numbers

Given the first number is 50
And the second number is 70
When the two numbers are added
Then the result should be 120

Please also check the Gherkin Reference section of the Reqnroll documentation for the details of the feature file syntax.

1.4.2 Feature Language

To avoid communication errors introduced by translations, it is recommended to keep the specification and the accep-
tance test descriptions in the language of the business. The Gherkin format supports many natural languages besides
English, like German, Spanish or French. More details on the supported natural languages are available in the Cucum-
ber documentation.

The language of the feature files can either be specified globally in your configuration (see Set the default feature file
language, or in the feature file’s header using the #language syntax. Specify the language using the ISO language
names used by the CultureInfo class of the .NET Framework (e.g. en-US).

Listing 34: Feature File

#language: de-DE
Funktionalität: Addition
...

Reqnroll uses the feature file language to determine the set of keywords used to parse the file, but the language setting
is also used as the default setting for converting parameters by the Reqnroll runtime. The culture for binding execution
and parameter conversion can be specified explicitly, see language element.

As data conversion can only be done using a specific culture in the .NET Framework, we recommend using the specific
culture name (e.g. en-US) instead of the neutral culture name (e.g. en). If a neutral culture is used, Reqnroll uses a
specific default culture to convert data (e.g. en-US is used to convert data if the en language was used).

1.4. Gherkin 35

https://cucumber.io/
https://cucumber.io/docs/gherkin/
https://cucumber.io/docs/gherkin/languages/
https://cucumber.io/docs/gherkin/languages/

Reqnroll

1.4.3 Gherkin Reference

Gherkin uses a set of special keywords to give structure and meaning to executable specifications. Each keyword is
translated to many spoken languages; in this reference we’ll use English.

Most lines in a Gherkin document start with one of the keywords.

Comments are only permitted at the start of a new line, anywhere in the feature file. They begin with zero or more
spaces, followed by a hash sign (#) and some text.

Block comments are currently not supported by Gherkin.

Either spaces or tabs may be used for indentation. The recommended indentation level is two spaces. Here is an
example:

Listing 35: GuessTheWord.feature

Feature: Guess the word

The first example has two steps
Scenario: Maker starts a game
When the Maker starts a game
Then the Maker waits for a Breaker to join

The second example has three steps
Scenario: Breaker joins a game
Given the Maker has started a game with the word "silky"
When the Breaker joins the Maker's game
Then the Breaker must guess a word with 5 characters

The trailing portion (after the keyword) of each step is matched to a code block, called a step definition.

Keywords

Each line that isn’t a blank line has to start with a Gherkin keyword, followed by any text you like. The only exceptions
are the feature and scenario descriptions.

The primary keywords are:

• Feature

• Rule

• Example (or Scenario)

• Given, When, Then, And, But for steps (or *)

• Background

• Scenario Outline (or Scenario Template)

• Examples

There are a few secondary keywords as well:

• """ (Doc Strings)

• | (Data Tables)

• @ (Tags)

• # (Comments)

36 Chapter 1. How to use the documentation

Reqnroll

Localization Gherkin is localized for many spoken languages; each has their own localized equivalent of these key-
words.

Feature

The purpose of the Feature keyword is to provide a high-level description of a software feature, and to group related
scenarios.

The first primary keyword in a Gherkin document must always be Feature, followed by a : and a short text that
describes the feature.

You can add free-form text underneath Feature to add more description.

These description lines are ignored by Reqnroll at runtime, but are available for reporting (They are included by default
in html reports).

Listing 36: GuessTheWord.feature

Feature: Guess the word

The word guess game is a turn-based game for two players.
The Maker makes a word for the Breaker to guess. The game
is over when the Breaker guesses the Maker's word.

Scenario: Maker starts a game

The name and the optional description have no special meaning to Reqnroll. Their purpose is to provide a place for you
to document important aspects of the feature, such as a brief explanation and a list of business rules (general acceptance
criteria).

The free format description for Feature ends when you start a line with the keyword Background, Rule, Example
or Scenario Outline (or their alias keywords).

You can place tags above Feature to group related features, independent of your file and directory structure.

Tags

Tags are markers that can be assigned to features and scenarios. Assigning a tag to a feature is equivalent to assigning
the tag to all scenarios in the feature file.

If supported by the test execution framework, Reqnroll generates categories from the tags. The generated category
name is the same as the tag’s name, but without the leading @. You can filter and group the tests to be executed using
these unit test categories. For example, you can tag crucial tests with @important, and then execute these tests more
frequently.

If your test execution framework does not support categories, you can still use tags to implement special logic for tagged
scenarios in bindings by querying the ScenarioContext.ScenarioInfo.Tags property.

Scenario, Rule and Feature level tags are available by querying the ScenarioInfo.CombinedTags property.

Reqnroll treats the @ignore tag as a special tag. Reqnroll generates an ignored test method from scenarios with this
tag.

1.4. Gherkin 37

Reqnroll

Descriptions

Free-form descriptions (as described above for Feature) can also be placed underneath Example/Scenario,
Background, Scenario Outline and Rule.

You can write anything you like, as long as no line starts with a keyword.

Rule

The purpose of the Rule keyword is to represent one business rule that should be implemented. It provides additional
information for a feature. A Rule is used to group together several scenarios that belong to this business rule. A Rule
should contain one or more scenarios that illustrate the particular rule.

You can also add tags on rules that will be inherited to all scenarios within that rule (like feature tags).

For example:

Listing 37: Highlander.feature

Feature: Highlander

Rule: There can be only One

Scenario: Only One -- More than one alive
Given there are 3 ninjas
And there are more than one ninja alive
When 2 ninjas meet, they will fight
Then one ninja dies (but not me)
And there is one ninja less alive

Scenario: Only One -- One alive
Given there is only 1 ninja alive
Then he (or she) will live forever ;-)

@edge_case
Rule: There can be Two (in some cases)

Scenario: Two -- Dead and Reborn as Phoenix
...

Scenario

This is a concrete example that illustrates a business rule. It consists of a list of steps.

The keyword Scenario is a synonym of the keyword Example.

You can have as many steps as you like, but we recommend you keep the number at 3-5 per example. Having too many
steps in an example, will cause it to lose it’s expressive power as specification and documentation.

In addition to being a specification and documentation, an example is also a test. As a whole, your examples are an
executable specification of the system.

Examples follow this same pattern:

• Describe an initial context (Given steps)

38 Chapter 1. How to use the documentation

Reqnroll

• Describe an event (When steps)

• Describe an expected outcome (Then steps)

Steps

Each step starts with Given, When, Then, And, or But.

Reqnroll executes each step in a scenario one at a time, in the sequence you’ve written them in. When Reqnroll tries to
execute a step, it looks for a matching step definition to execute.

Keywords are not taken into account when looking for a step definition. This means you cannot have a Given, When,
Then, And or But step with the same text as another step.

Reqnroll considers the following steps duplicates:

Listing 38: Feature File

Given there is money in my account
Then there is money in my account

This might seem like a limitation, but it forces you to come up with a less ambiguous, more clear domain language:

Listing 39: Feature File

Given my account has a balance of £430
Then my account should have a balance of £430

Given

Given steps are used to describe the initial context of the system - the scene of the scenario. It is typically something
that happened in the past.

When Reqnroll executes a Given step, it will configure the system to be in a well-defined state, such as creating and
configuring objects or adding data to a test database.

The purpose of Given steps is to put the system in a known state before the user (or external system) starts interacting
with the system (in the When steps). Avoid talking about user interaction in Given’s. If you were creating use cases,
Given’s would be your preconditions.

It’s okay to have several Given steps (use And or But for number 2 and upwards to make it more readable).

Examples:

• Mickey and Minnie have started a game

• I am logged in

• Joe has a balance of £42

1.4. Gherkin 39

Reqnroll

When

When steps are used to describe an event, or an action. This can be a person interacting with the system, or it can be an
event triggered by another system.

It’s strongly recommended you only have a single When step per Scenario. If you feel compelled to add more, it’s
usually a sign that you should split the scenario up into multiple scenarios.

Examples:

• Guess a word

• Invite a friend

• Withdraw money

Imagine it’s 1922. Most software does something people could do manually (just not as efficiently).

Try hard to come up with examples that don’t make any assumptions about technology or user interface. Imagine it’s
1922, when there were no computers.

Implementation details should be hidden in the step definitions.

Then

Then steps are used to describe an expected outcome, or result.

The step definition of a Then step should use an assertion to compare the actual outcome (what the system actually
does) to the expected outcome (what the step says the system is supposed to do).

An outcome should be on an observable output. That is, something that comes out of the system (report, user interface,
message), and not a behavior deeply buried inside the system (like a record in a database).

Examples:

• See that the guessed word was wrong

• Receive an invitation

• Card should be swallowed

While it might be tempting to implement Then steps to look in the database - resist that temptation!

You should only verify an outcome that is observable for the user (or external system), and changes to a database are
usually not.

And, But

If you have successive Given’s, When’s, or Then’s, you could write:

Listing 40: Feature File

Scenario: Multiple Givens
Given one thing
Given another thing
Given yet another thing
When I open my eyes
Then I should see something
Then I shouldn't see something else

40 Chapter 1. How to use the documentation

Reqnroll

Or, you could make the example more fluidly structured by replacing the successive Given’s, When’s, or Then’s with
And’s and But’s:

Listing 41: Feature File

Scenario: Multiple Givens
Given one thing
And another thing
And yet another thing
When I open my eyes
Then I should see something
But I shouldn't see something else

*

Gherkin also supports using an asterisk (*) in place of any of the normal step keywords. This can be helpful when you
have some steps that are effectively a list of things, so you can express it more like bullet points where otherwise the
natural language of And etc might not read so elegantly.

For example:

Listing 42: Feature File

Scenario: All done
Given I am out shopping
And I have eggs
And I have milk
And I have butter
When I check my list
Then I don't need anything

Could be expressed as:

Listing 43: Feature File

Scenario: All done
Given I am out shopping
* I have eggs
* I have milk
* I have butter
When I check my list
Then I don't need anything

Background

Occasionally you’ll find yourself repeating the same Given steps in all of the scenarios in a Feature.

Since it is repeated in every scenario, this is an indication that those steps are not essential to describe the scenarios;
they are incidental details. You can literally move such Given steps to the background, by grouping them under a
Background section.

A Background allows you to add some context to the scenarios that follow it. It can contain one or more Given steps,
which are run before each scenario, but after any Before hooks.

1.4. Gherkin 41

Reqnroll

A Background is placed before the first Scenario/Example, at the same level of indentation.

For example:

Listing 44: MultipleSiteSupport.feature

Feature: Multiple site support
Only blog owners can post to a blog, except administrators,
who can post to all blogs.

Background:
Given a global administrator named "Greg"
And a blog named "Greg's anti-tax rants"
And a customer named "Dr. Bill"
And a blog named "Expensive Therapy" owned by "Dr. Bill"

Scenario: Dr. Bill posts to his own blog
Given I am logged in as Dr. Bill
When I try to post to "Expensive Therapy"
Then I should see "Your article was published."

Scenario: Dr. Bill tries to post to somebody else's blog, and fails
Given I am logged in as Dr. Bill
When I try to post to "Greg's anti-tax rants"
Then I should see "Hey! That's not your blog!"

Scenario: Greg posts to a client's blog
Given I am logged in as Greg
When I try to post to "Expensive Therapy"
Then I should see "Your article was published."

Background is also supported at the Rule level, for example:

Listing 45: OverdueTasks.feature

Feature: Overdue tasks
Let users know when tasks are overdue, even when using other
features of the app

Rule: Users are notified about overdue tasks on first use of the day
Background:
Given I have overdue tasks

Scenario: First use of the day
Given I last used the app yesterday
When I use the app
Then I am notified about overdue tasks

Scenario: Already used today
Given I last used the app earlier today
When I use the app
Then I am not notified about overdue tasks

...

You can only have one set of Background steps per Feature or Rule. If you need different Background steps for

42 Chapter 1. How to use the documentation

Reqnroll

different scenarios, consider breaking up your set of scenarios into more Rules or more Features.

For a less explicit alternative to Background, check out scoped step definitions.

Tips for using Background

• Don’t use Background to set up complicated states, unless that state is actually something the client needs to
know.

– For example, if the user and site names don’t matter to the client, use a higher-level step such as Given I
am logged in as a site owner.

• Keep your Background section short.

– The client needs to actually remember this stuff when reading the scenarios. If the Background is more
than 4 lines long, consider moving some of the irrelevant details into higher-level steps.

• Make your Background section vivid.

– Use colorful names, and try to tell a story. The human brain keeps track of stories much better than it keeps
track of names like "User A", "User B", "Site 1", and so on.

• Keep your scenarios short, and don’t have too many.

– If the Background section has scrolled off the screen, the reader no longer has a full overview of whats
happening. Think about using higher-level steps, or splitting the *.feature file.

Scenario Outline

The Scenario Outline keyword can be used to run the same Scenario multiple times, with different combinations
of values.

The keyword Scenario Template is a synonym of the keyword Scenario Outline.

Copying and pasting scenarios to use different values quickly becomes tedious and repetitive:

Listing 46: Feature File

Scenario: eat 5 out of 12
Given there are 12 cucumbers
When I eat 5 cucumbers
Then I should have 7 cucumbers

Scenario: eat 5 out of 20
Given there are 20 cucumbers
When I eat 5 cucumbers
Then I should have 15 cucumbers

We can collapse these two similar scenarios into a Scenario Outline.

Scenario outlines allow us to more concisely express these scenarios through the use of a template with < >-delimited
parameters:

Listing 47: Feature File

Scenario Outline: eating
Given there are <start> cucumbers

(continues on next page)

1.4. Gherkin 43

Reqnroll

(continued from previous page)

When I eat <eat> cucumbers
Then I should have <left> cucumbers

Examples:
start	eat	left
12	5	7
20	5	15

A Scenario Outline must contain an Examples (or Scenarios) section. Its steps are interpreted as a template
which is never directly run. Instead, the Scenario Outline is run once for each row in the Examples section beneath
it (not counting the first header row).

The steps can use <> delimited parameters that reference headers in the examples table. Reqnroll will replace these
parameters with values from the table before it tries to match the step against a step definition.

Note: Tables used in Examples must have unique headers. Using duplicate headers will result in errors.

Hint: In certain cases, when generating method names using the regular expression method, Reqnroll is unable to
generate the correct parameter signatures for unit test logic methods without a little help. Placing single quotation
marks (') around placeholders (eg. '<placeholder>')improves Reqnroll’s ability to parse the scenario outline and
generate more accurate regular expressions and test method signatures.

You can also use parameters in multiline step arguments.

Step Arguments

In some cases you might want to pass more data to a step than fits on a single line. For this purpose Gherkin has Doc
Strings and Data Tables.

Doc Strings

Doc Strings are handy for passing a larger piece of text to a step definition.

The text should be offset by delimiters consisting of three double-quote marks on lines of their own:

Listing 48: Feature File

Given a blog post named "Random" with Markdown body
"""
Some Title, Eh?
===============
Here is the first paragraph of my blog post. Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
"""

In your step definition, there’s no need to find this text and match it in your pattern. It will automatically be passed as
the last argument in the step definition.

Indentation of the opening """ is unimportant, although common practice is two spaces in from the enclosing step.
The indentation inside the triple quotes, however, is significant. Each line of the Doc String will be dedented according

44 Chapter 1. How to use the documentation

Reqnroll

to the opening """. Indentation beyond the column of the opening “”” will therefore be preserved.

Data Tables

Data Tables are handy for passing a list of values to a step definition:

Listing 49: Feature File

Given the following users exist:
name	email	twitter
Aslak	aslak@cucumber.io	@aslak_hellesoy
Julien	julien@cucumber.io	@jbpros
Matt	matt@cucumber.io	@mattwynne

Just like Doc Strings, Data Tables will be passed to the step definition as the first argument.

Reqnroll provides a rich API for manipulating tables from within step definitions. See the DataTable Helpers reference
for more details.

Spoken Languages

The language you choose for Gherkin should be the same language your users and domain experts use when they talk
about the domain. Translating between two languages should be avoided.

This is why Gherkin has been translated to over 70 languages.

Here is a Gherkin scenario written in Norwegian:

Listing 50: Feature File

language: no
Funksjonalitet: Gjett et ord

Eksempel: Ordmaker starter et spill
Når Ordmaker starter et spill
Så må Ordmaker vente på at Gjetter blir med

Eksempel: Gjetter blir med
Gitt at Ordmaker har startet et spill med ordet "bløtt"
Når Gjetter blir med på Ordmakers spill
Så må Gjetter gjette et ord på 5 bokstaver

A # language: header on the first line of a feature file tells Reqnroll what spoken language to use - for example #
language: fr for French. If you omit this header, Reqnroll will default to English (en).

You can also define the language in the configuration file.

1.4. Gherkin 45

Reqnroll

Gherkin Dialects

In order to allow Gherkin to be written in a number of languages, the keywords have been translated into multiple
languages. To improve readability and flow, some languages may have more than one translation for any given keyword.

Overview

You can find all translation of Gherkin in the Cucumber documentation. This is also the place to add or update trans-
lations.

Note: Big parts of this page where taken over from Cucumber Gherkin Reference.

1.5 Automation Features

This part of the documentation describes the Reqnroll features that can be used to implement the automation code for
the scenarios.

In order to automate the scenarios, you can create step definitions, hooks and step argument transformations. In Reqnroll
these elements are called bindings.

This part contains details of the following topics.

1.5.1 Bindings

The Gherkin feature files are closer to free-text than to code – they cannot be executed as they are. The automation
that connects the specification to the application interface has to be developed first. The automation that connects
the Gherkin specifications to source code is called a binding. The binding classes and methods can be defined in the
Reqnroll project or in external binding assemblies.

Note: Bindings (step definitions, hooks, step argument transformations) are global for the entire Reqnroll project.

There are several kinds of bindings in Reqnroll.

Step Definitions

This is the most important one. The step definition that automates the scenario at the step level. This means that instead
of providing automation for the entire scenario, it has to be done for each separate step. The benefit of this model is
that the step definitions can be reused in other scenarios, making it possible to (partly) construct further scenarios from
existing steps with less (or no) automation effort.

It is required to add the [Binding] attribute to the classes where you define your step definitions.

See more details about step definitions in the Step Definitions page.

46 Chapter 1. How to use the documentation

https://cucumber.io/docs/gherkin/languages/
https://cucumber.io/docs/gherkin/reference/

Reqnroll

Hooks

Hooks can be used to perform additional automation logic on specific events, e.g. before executing a scenario. See
more details about hooks in the Hooks page.

Step Argument Transformations

Step Argument Transformations can be used to extend the step definition parameter conversion system of Reqnroll. See
more details about step argument conversions in the Step Argument Conversions page.

1.5.2 Step Definitions

The step definitions provide the connection between your feature files and application interfaces. You have to add the
[Binding] attribute to the class where your step definitions are:

Listing 51: Step Definition File

[Binding]
public class StepDefinitions
{

...
}

Note: Bindings (step definitions, hooks, step argument transformations) are global for the entire Reqnroll project.

For better reusability, the step definitions can include parameters. This means that it is not necessary to define a new
step definition for each step that just differs slightly. For example, the steps When I perform a simple search on
'Domain' and When I perform a simple search on 'Communication' can be automated with a single step
definition, with ‘Domain’ and ‘Communication’ as parameters.

The following example shows a simple step definition that matches to the step When I perform a simple search
on 'Domain':

Listing 52: Step Definition File

[When("I perform a simple search on {string}")]
public void WhenIPerformASimpleSearchOn(string searchTerm)
{

var controller = new CatalogController();
actionResult = controller.Search(searchTerm);

}

Here the method is annotated with the [When] attribute, and includes the expression I perform a simple search
on {string} used to match the step’s text. This expression is called a Cucumber expression. The term {string}
is used to define a (string) parameter for the method. For detailed description of the expression syntax, check the
Cucumber Expressions page.

The matching can also be specified using regular expressions. The step definition above could be also written as:

1.5. Automation Features 47

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions

Reqnroll

Listing 53: Step Definition File

[When(@"^I perform a simple search on '(.*)'$")]
public void WhenIPerformASimpleSearchOn(string searchTerm)
{

var controller = new CatalogController();
actionResult = controller.Search(searchTerm);

}

When using regular expressions, the groups (e.g. (.*)) define the step definition parameters.

Supported Step Definition Attributes

• [Given(expression)] or [Given] - Reqnroll.GivenAttribute

• [When(expression)] or [When] - Reqnroll.WhenAttribute

• [Then(expression)] or [Then] - Reqnroll.ThenAttribute

• [StepDefinition(expression)] or [StepDefinition] - Reqnroll.StepDefinitionAttribute,
matches for given, when or then attributes

The expression can be either a Cucumber Expression or a Regular Expression.

You can annotate a single method with multiple attributes in order to support different phrasings in the feature file for
the same automation logic.

Listing 54: Step Definition File

[When("I perform a simple search on {string}")]
[When("I search for {string}")]
public void WhenIPerformASimpleSearchOn(string searchTerm)
{
...

}

Other Attributes

The [Obsolete] attribute from the system namespace is also supported, the runtime section of the configuration can
be used to influence how Reqnroll behaves when an obsolete step definition is used.

48 Chapter 1. How to use the documentation

Reqnroll

Listing 55: Step Definition File

[Given("Stuff is done")]
[Obsolete]
public void GivenStuffIsDone()
{

var x = 2+3;
}

Step Definition Methods Rules

• Must be in a public class, marked with the [Binding] attribute.

• Must be a public method.

• Can be either a static or an instance method. If it is an instance method, the containing class will be instantiated
once for every scenario.

• Cannot have out or ref parameters.

• Should return void or Task.

Step Matching Styles & Rules

There are multiple options for step definition matching:

• Use attributes with cucumber expressions

• Use attributes with regular expressions

• Use the method name as cucumber or regular expressions (for F#)

Parameter Matching Rules

• Step definitions can specify parameters. These will match to the parameters of the step definition method.

• The method parameter type can be string or other .NET type. In the later case a configurable conversion is
applied.

• With cucumber expressions

– The parameter placeholders ({parameter-type}) define the arguments for the method based on the order
(the match result of the first group becomes the first argument, etc.).

– For the exact parameter rules please check the cucumber expressions page.

• With regular expressions

– The match groups ((...)) of the regular expression define the arguments for the method based on the
order (the match result of the first group becomes the first argument, etc.).

– You can use non-capturing groups (?:regex) in order to use groups without a method argument.

• With method name matching

– You can refer to the method parameters with either the parameter name (ALL-CAPS) or the parameter
index (zero-based) with the P prefix, e.g. P0.

1.5. Automation Features 49

Reqnroll

Data Table or DocString Arguments

If the step definition method should match for steps having Data Table or DocString text arguments, additional
DataTable or string parameters have to be defined in the method signature to be able to receive these arguments.
You cannot have both of these arguments in a step definition.

Listing 56: Feature File

Given the following books
Author	Title
Martin Fowler	Analysis Patterns
Gojko Adzic	Bridging the Communication Gap

Given a blog post named "Random" with Markdown body
"""
Some Title, Eh?
===============
Here is the first paragraph of my blog post. Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
"""

Listing 57: Step Definition File

[Given("the following books")]
public void GivenTheFollowingBooks(DataTable table)
{
...

}

[Given("a blog post named {string} with Markdown body")]
public void GivenABlogPostWithMarkdownBody(string postName, string bodyText)
{
...

}

Note: For backwards compatibility with SpecFlow, you can also declare data table parameters with the Reqnroll.
Table class. It is recommended to use the DataTable class whenever it is possible.

1.5.3 Hooks

Hooks (event bindings) can be used to perform additional automation logic at specific times, such as any setup required
prior to executing a scenario. In order to use hooks, you need to add the Binding attribute to your class. Hooks can be
synchronous or asynchronous, allowing them to perform operations that can benefit from async programming patterns:

Listing 58: Hook File

[Binding]
public class MyHooks
{

[BeforeScenario]
public void SetupTestUsers()
{

(continues on next page)

50 Chapter 1. How to use the documentation

Reqnroll

(continued from previous page)

//...
}

}

Listing 59: Hook File with async method

[Binding]
public class MyHooks
{

[BeforeScenario]
public async Task SetupTestUsersAsync()
{

// Asynchronous setup logic
// Example async operation
await Task.Delay(1000);

}
}

Hooks are global, but can be restricted to run only for features or scenarios by defining a scoped binding, which can be
filtered with tags. The execution order of hooks for the same type is undefined, unless specified explicitly.

The [BeforeScenario] in the following example will execute only for those scenarios that are (implicitly or explicitly)
tagged with @requiresUsers.

Listing 60: Hook File

[Binding]
public class MyHooks
{

[BeforeScenario("@requiresUsers")]
public void SetupTestUsers()
{

//...
}

}

1.5. Automation Features 51

Reqnroll

Listing 61: Hook File with async method

[Binding]
public class MyHooks
{

[BeforeScenario("@requiresUsers")]
public async Task SetupTestUsersAsync()
{

//...
// Asynchronous setup logic
// Example async operation
await Task.Delay(1000);

}
}

Supported Hook Attributes

Attribute Tag fil-
tering*

Description

[BeforeTestRun][AfterTestRun] not
possi-
ble

Automation logic that has to run before/after the entire test run (see
note below). The method it is applied to must be static.

[BeforeFeature][AfterFeature] possi-
ble

Automation logic that has to run before/after executing each fea-
ture The method it is applied to must be static.

[BeforeScenario] or
[Before][AfterScenario]
or [After]

possi-
ble

Automation logic that has to run before/after executing each sce-
nario or scenario outline example

[BeforeScenarioBlock][AfterScenarioBlock]possi-
ble

Automation logic that has to run before/after executing each sce-
nario block (e.g. between the “givens” and the “whens”)

[BeforeStep][AfterStep] possi-
ble

Automation logic that has to run before/after executing each sce-
nario step

Note: As most of the unit test runners do not provide a hook for executing logic once the tests have been executed, the
[AfterTestRun] event is triggered by the test assembly unload event.

The exact timing and thread of this execution may therefore differ for each test runner.

You can annotate a single method with multiple attributes, and both synchronous and asynchronous methods can be
used as hooks, depending on the needs of your test setup and teardown logic.

52 Chapter 1. How to use the documentation

Reqnroll

Using Hooks with Constructor Injection

You can use context injection to access scenario level dependencies in your hook class using constructor injection. For
example you can get the ScenarioContext injected in the constructor:

Listing 62: Hook File

[Binding]
public class MyHooks
{

private ScenarioContext _scenarioContext;

public MyHooks(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[BeforeScenario]
public void SetupTestUsers()
{

//_scenarioContext...
}

}

Listing 63: Hook File with async method

[Binding]
public class MyHooks
{

private ScenarioContext _scenarioContext;

public MyHooks(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[BeforeScenario]
public async Task SetupTestUsersAsync()
{

//_scenarioContext...
// Example async operation
await Task.Delay(1000);

}
}

Note: For static hook methods you can use parameter injection which can be combined with asynchronous execution
to resolve dependencies and perform setup or teardown tasks asynchronously.

1.5. Automation Features 53

Reqnroll

Using Hooks with Parameter Injection

You can add parameters to your hook method that will be automatically injected by Reqnroll. For example you can get
the ScenarioContext injected as parameter in the BeforeScenario hook.

Listing 64: Hook File

[Binding]
public class MyHooks
{

[BeforeScenario]
public void SetupTestUsers(ScenarioContext scenarioContext)
{

//scenarioContext...
}

}

Listing 65: Hook File with async method

[Binding]
public class MyHooks
{

[BeforeScenario]
public async Task SetupTestUsersAsync(ScenarioContext scenarioContext)
{

//scenarioContext...
// Example async operation
await Task.Delay(1000);

}
}

Parameter injection is especially useful for hooks that must be implemented as static methods.

Listing 66: Hook File

[Binding]
public class Hooks
{

[BeforeFeature]
public static void SetupStuffForFeatures(FeatureContext featureContext)
{

Console.WriteLine("Starting " + featureContext.FeatureInfo.Title);
}

}

Listing 67: Hook File with async method

[Binding]
public class Hooks
{

[BeforeFeature]
public static async Task SetupStuffForFeaturesAsync(FeatureContext featureContext)
{

// Example async operation
(continues on next page)

54 Chapter 1. How to use the documentation

Reqnroll

(continued from previous page)

await Task.Delay(1000);
Console.WriteLine("Starting " + featureContext.FeatureInfo.Title);

}
}

In the BeforeTestRun hook you can resolve test thread specific or global services/dependencies as parameters.

Listing 68: Hook File

[BeforeTestRun]
public static void BeforeTestRunInjection(ITestRunnerManager testRunnerManager)
{

//All parameters are resolved from the test run (global) container automatically.
var location = testRunnerManager.TestAssembly.Location;

}

Listing 69: Hook File with async method

[BeforeTestRun]
public static async Task BeforeTestRunInjectionAsync(ITestRunnerManager␣
→˓testRunnerManager)
{

var location = testRunnerManager.TestAssembly.Location;

// Example async operation
await Task.Delay(1000);

}

Depending on the type of the hook the parameters are resolved from a container with the corresponding lifecycle.

Attribute Container
[BeforeTestRun][AfterTestRun] TestRunContainer

(“global” container)
[BeforeFeature][AfterFeature] FeatureContainer
[BeforeScenario][AfterScenario][BeforeScenarioBlock][AfterScenarioBlock][BeforeStep][AfterStep]ScenarioContainer

Hook Execution Order

By default the hooks of the same type (e.g. two [BeforeScenario] hook) are executed in an unpredictable order. If
you need to ensure a specific execution order, you can specify the Order property in the hook’s attributes.

Listing 70: Hook File

[BeforeScenario(Order = 0)]
public void CleanDatabase()
{

// we need to run this first...
}

[BeforeScenario(Order = 100)]
public void LoginUser()

(continues on next page)

1.5. Automation Features 55

Reqnroll

(continued from previous page)

{
// ...so we can log in to a clean database

}

Listing 71: Hook File with async method

[BeforeScenario(Order = 0)]
public async Task CleanDatabaseAsync()
{

// we need to run this first...
// Example async operation
await Task.Delay(1000);

}

[BeforeScenario(Order = 100)]
public async Task LoginUserAsync()
{

// ...so we can log in to a clean database
// Example async operation
await Task.Delay(1000);

}

The number indicates the order, not the priority, i.e. the hook with the lowest number is always executed first.

If no order is specified, the default value is 10000. However, we do not recommend on relying on the value to order
your tests and recommend specifying the order explicitly for each hook.

Note: If a hook throws an unhandled exception, subsequent hooks of the same type are not executed. If you want to
ensure that all hooks of the same types are executed, you need to handle your exceptions manually.

Note: If a BeforeScenario throws an unhandled exception then all the scenario steps will be marked as skipped and
the ScenarioContext.ScenarioExecutionStatus will be set to TestError.

Tag Scoping

Most hooks support tag scoping. Use tag scoping to restrict hooks to only those features or scenarios that have at least
one of the tags in the tag filter (tags are combined with OR). You can specify the tag in the attribute or using scoped
bindings.

56 Chapter 1. How to use the documentation

Reqnroll

1.5.4 Step Argument Conversions

Step definitions can use parameters to make them reusable for similar steps. The parameters are taken from either the
step’s text or from the values in additional examples. These arguments are provided as either strings or Reqnroll.
DataTable instances.

To avoid cumbersome conversions in the step binding methods, Reqnroll can perform an automatic conversion from
the arguments to the parameter type in the binding method. All conversions are performed using the culture of the
feature file, unless the binding setting of the language section is defined in your reqnroll.json configuration file
(see Feature Language). The following conversions can be performed by Reqnroll (in the following precedence):

• no conversion, if the argument is an instance of the parameter type (e.g. the parameter type is object or string)

• step argument transformation

• standard conversion

Step Argument Transformation

Step argument transformations can be used to apply a custom conversion step to the arguments in step definitions. The
step argument transformation is a method that converts from text (specified by a regular expression) or a DataTable
instance to an arbitrary .NET type.

A step argument transformation is used to convert an argument if:

• The return type of the transformation is the same as the parameter type

• The regular expression (if specified) matches the original (string) argument

Note: If multiple matching transformation are available, a warning is output in the trace and the first transformation
is used.

The following example transforms a relative period of time (in 3 days) into a DateTime structure.

Listing 72: C# File

[Binding]
public class Transforms
{

[StepArgumentTransformation(@"in (\d+) days?")]
public DateTime InXDaysTransform(int days)
{

return DateTime.Today.AddDays(days);
}

}

The following example transforms any string input (no regex provided) into an XmlDocument.

Listing 73: C# File

[Binding]
public class Transforms
{

[StepArgumentTransformation]
public XmlDocument XmlTransform(string xml)
{

(continues on next page)

1.5. Automation Features 57

Reqnroll

(continued from previous page)

XmlDocument result = new XmlDocument();
result.LoadXml(xml);
return result;

}
}

The following example transforms a table argument into a list of Book entities (using the Reqnroll Assist Helpers).

Listing 74: C# File

[Binding]
public class Transforms
{

[StepArgumentTransformation]
public IEnumerable<Book> BooksTransform(DataTable booksTable)
{

return booksTable.CreateSet<Books>();
}

}

Standard Conversion

A standard conversion is performed by Reqnroll in the following cases:

• The argument can be converted to the parameter type using Convert.ChangeType()

• The parameter type is an enum type and the (string) argument is an enum value

• The parameter type is Guid and the argument contains a full GUID string or a GUID string prefix. In the latter
case, the value is filled with trailing zeroes.

1.5.5 Asynchronous Bindings

If you have code that executes an asynchronous task, you can define asynchronous bindings to execute the corresponding
code using the async and await keywords.

The following example shows a step definition with an asynchronous When step:

Listing 75: Step Definition File

[When(@"I want to get the web page '(.*)'")]
public async Task WhenIWantToGetTheWebPage(string url)
{

var message = await _httpClient.GetAsync(url);
// ...

}

Hint: You can also use asynchronous step argument transformations.

Hint: It is also possible to use ValueTask and ValueTask<T> return types.

58 Chapter 1. How to use the documentation

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/index
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask?view=net-6.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.tasks.valuetask-1?view=net-6.0

Reqnroll

1.5.6 Bindings from External Assemblies

Bindings can be defined in the main Reqnroll project or in other assemblies (external binding assemblies). If the
bindings are used from external binding assemblies, the following notes have to be considered:

• The external binding assembly can be another project in the solution or a compiled library (dll).

• The external binding assembly can also use a different .NET language, e.g. you can write bindings for your C#
Reqnroll project also in F# (As an extreme case, you can use your Reqnroll project with the feature files only and
with all the bindings defined in external binding assemblies).

• The external binding assembly has to be referenced from the Reqnroll project to ensure it is copied to the target
folder and listed in the reqnroll.json of the Reqnroll project (see below).

• The external binding assemblies can contain all kind of bindings: step definition, hooks and also step argument
transformations.

Configuration

In order to use bindings from an external binding assembly, you have to list it (with the assembly name) in the
reqnroll.json (the Reqnroll project is always included implicitly). See Use bindings from external projects sec-
tion of the documentation for details.

The following example registers the project SharedStepDefinitions as an external binding assembly.

Listing 76: reqnroll.json

{
"$schema": "https://schemas.reqnroll.net/reqnroll-config-latest.json",

"bindingAssemblies": [
{
"assembly": "SharedStepDefinitions"

}
]

}

1.5.7 Cucumber Expressions

Cucumber Expression is an expression type to specify step definitions. Cucumber Expressions is an alternative to
Regular Expressions with a more intuitive syntax.

You can find a detailed description about cucumber expressions on GitHub. In this page we only provide a short
summary and the special handling in .NET / Reqnroll.

The following step definition that uses cucumber expression matches to the step When I have 42 cucumbers in
my belly

Listing 77: Step Definition File

[When("I have {int} cucumbers in my belly")]
public void WhenIHaveCucumbersInMyBelly(int count) { ... }

1.5. Automation Features 59

https://docs.microsoft.com/en-us/dotnet/standard/base-types/regular-expressions
https://github.com/cucumber/cucumber-expressions#readme

Reqnroll

Cucumber Expression basics

Simple text

To match for a simple text, just use the text as cucumber expression.

[When("I do something")] matches to When I do something

Parameters

Parameters can be defined using the {parameter-type} syntax. Where parameter-type can be any of the following:

• A short name for some simple built-in types: {int}, {long}, {byte}, {float}, {double}, {decimal}

• string ({string}) that matches to quoted text wrapped with either " or '. E.g., [Given("a user
{string}")] matches to Given a user "Marvin" or Given a user 'Zaphod Beeblebrox'.

• word ({word}) that matches to a single word without quotes. E.g., [Given("a user {word}")] matches to
Given a user Marvin.

• Empty ({}) that matches to anything (like (.*) with regex).

• A type name without namespace that is supported by Reqnroll as a parameter type (types with built-in support,
enum types and types with custom argument conversions). E.g. [When("I have {CustomColor} cucumbers
in my belly")] matches to When I have green cucumbers in my belly if CustomColor is an enum
with Green as a value.

• A custom type name you have specified int the [StepArgumentTransformation] attribute. E.g., With
[StepArgumentTransformation("v(.*)", Name = "my_version")], you can define a step as [When("I
download the release {my_version} of the application")] that matches to When I download
the release v1.2.3 of the application.

Optionals, alternatives

Cucumber expressions use the parentheses ((...)) for optionals and the / character to define alternatives. The step
definition

Listing 78: Step Definition File

[When("I have {int} cucumber(s) in my belly/tummy")]
public void WhenIHaveCucumbersInMyBelly(int count)

will match to all of the following steps

60 Chapter 1. How to use the documentation

Reqnroll

Listing 79: Feature File

When I have 42 cucumbers in my belly
When I have 1 cucumber in my belly
When I have 8 cucumbers in my tummy

Using Cucumber Expressions with Reqnroll

You can use both cucumber expressions and regular expressions in your project. Reqnroll has uses some heuristics to
decide if your expression is a cucumber expression or a regular expression.

In case your regular expression is wrongly detected as cucumber expression, you can always force to use regular ex-
pression by specifying the regex start/end markers (^/$).

Listing 80: Step Definition File

[When(@"^this expression is treated as a regex$")]

1.5.8 Scoped Bindings

Bindings (step definitions, hooks, step argument transformations) are global for the entire Reqnroll project. This means
that step definitions bound to a very generic step text (e.g. “When I save the changes”) become challenging to imple-
ment. The general solution for this problem is to phrase the scenario steps in a way that the context is clear (e.g. “When
I save the book details”).

In some cases however, it is necessary to restrict when step definitions or hooks are executed based on certain conditions.
Reqnroll’s scoped bindings can be used for this purpose.

You can restrict the execution of scoped bindings by:

• tag

• feature (using the feature title)

• scenario (using the scenario title)

The following tags are taken into account for scenario, scenario block or step hooks:

• tags defined for the feature

• tags defined for the scenario

• tags defined for the scenario outline

• tags defined for the scenario outline example set (Examples:)

Danger: Be careful! Coupling your step definitions to features and scenarios is an anti-pattern. Read more about
it on the Cucumber Wiki

Use the [Scope] attribute to define the scope:

Listing 81: Step Definition File

[Scope(Tag = "mytag", Feature = "feature title", Scenario = "scenario title")]

1.5. Automation Features 61

https://cucumber.io/docs/guides/anti-patterns/#feature-coupled-step-definitions
https://cucumber.io/docs/guides/anti-patterns/#feature-coupled-step-definitions

Reqnroll

Scoping Rules

Scope can be defined at the method or class level.

If multiple criteria (e.g. both tag and feature) are specified in the same [Scope] attribute, they are combined with
AND, i.e. all criteria need to match.

The following example combines the feature name and the tag scope with “AND”:

Listing 82: Step Definition File

[Scope(Tag = "thisTag", Feature = "myFeature")]

If multiple [Scope] attributes are defined for the same method or class, the attributes are combined with OR, i.e. at
least one of the [Scope] attributes needs to match.

The following example combines the tag scopes with “OR”:

Listing 83: Step Definition File

[Scope(Tag = "thisTag")] [Scope(Tag = "OrThisTag")]
[Scope(Tag = "thisTag"), Scope(Tag = "OrThisTag")]

Note: Scopes on a different level (class and method) will be combined with OR: defining a [Scope] attribute on class
level and defining another [Scope] at method level will cause the attributes to be combined with OR. If you want an
AND combination, use a single Scope, e.g.:

Listing 84: Step Definition File

[Scope(Feature = "feature title", Scenario = "scenario title")]

If a step can be matched to both a step definition without a [Scope] attribute as well as a step definition with a [Scope]
attribute, the step definition with the [Scope] attribute is used (no ambiguity).

If a step matches several scoped step definitions, the one with the most restrictions is used. For example, if the first
step definition contains [Scope(Tag = "myTag")] and the second contains [Scope(Tag = "myTag", Feature =
"myFeature")] the second step definition (the more specific one) is used if it matches the step.

If you have multiple scoped step definition with the same number of restrictions that match the step, you
will get an ambiguous step binding error. For example, if you have a step definition containing [Scope(Tag
= "myTag1", Scenario = "myScenario")] and another containing [Scope(Tag = "myTag2", Scenario =
"myScenario")], you will receive an ambiguous step binding error if the myScenario has both the “myTag1” and
“myTag2” tags.

Scope Examples

Scoped BeforeScenario Hook

The following example starts Selenium for scenarios marked with the @web tag.

Listing 85: Hook File

[BeforeScenario("web")]
public static void BeforeWebScenario()

(continues on next page)

62 Chapter 1. How to use the documentation

Reqnroll

(continued from previous page)

{
StartSelenium();

}

Different Steps for Different Tags

The following example defines a different scope for the same step depending on whether UI automation (@web tag) or
controller automation (@controller tag) is required:

Listing 86: Step Definition File

[When(@"I perform a simple search on '(.*)'", Scope(Tag = "controller"))]
public void WhenIPerformASimpleSearchOn(string searchTerm)
{

var controller = new CatalogController();
actionResult = controller.Search(searchTerm);

}

[When(@"I perform a simple search on '(.*)'"), Scope(Tag = "web")]
public void PerformSimpleSearch(string title)
{

selenium.GoToThePage("Home");
selenium.Type("searchTerm", title);
selenium.Click("searchButton");

}

Scoping Tips & Tricks

The following example shows a way to “ignore” executing the scenarios marked with @manual. However Reqnroll’s
tracing will still display the steps, so you can work through the manual scenarios by following the steps in the report.

Listing 87: Step Definition File

[Binding, Scope(Tag = "manual")]
public class ManualSteps
{

[Given(".*"), When(".*"), Then(".*")]
public void EmptyStep()
{
}

[Given(".*"), When(".*"), Then(".*")]
public void EmptyStep(string multiLineStringParam)
{
}

[Given(".*"), When(".*"), Then(".*")]
public void EmptyStep(DataTable tableParam)
{

(continues on next page)

1.5. Automation Features 63

Reqnroll

(continued from previous page)

}
}

Beyond Scope

You can define more complex filters using the ScenarioContext class. The following example starts selenium if the
scenario is tagged with @web and @automated.

Listing 88: Step Definition File

[Binding]
public class Binding
{

ScenarioContext _scenarioContext;

public Binding(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[BeforeScenario("web")]
public static void BeforeWebScenario()
{

if(_scenarioContext.ScenarioInfo.Tags.Contains("automated"))
StartSelenium();

}
}

1.5.9 DataTable Helpers

A number of helpers implemented as extension methods of the DataTable class make it easier to implement steps that
accept a DataTable parameter.

When helper methods expect a generic type (usually denoted as <T> in the method signature), you can use:

• classes

• records (with C# 9)

• tuples

CreateInstance<T>

The CreateInstance<T> extension method of the DataTable class will convert a table in your scenario to a sin-
gle instance of a class. The class used to convert the table is specified by the generic type T in the method signa-
ture CreateInstance<T>. You can use two different table layouts in your scenarios with the CreateInstance<T>
method.

• Vertical Tables

A vertical table consists of two columns where values in the first column match property names, and values of
the second column are the values assigned to those properties. The header row of the table is ignored. Header
cells may be named to suit your use case.

64 Chapter 1. How to use the documentation

Reqnroll

Given I entered the following data into the new account form:
Field	Value
Name	John Galt
Birthdate	2/2/1902
Height In Inches	72
Bank Account Balance	1234.56

^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^
property names property values

This layout is desirable for tables containing many values making the vertical layout easier to read.

• Horizontal Tables

A horizontal table consists of a header row where the header cells match property names, and subsequent data
rows contain the values assigned to those properties. In order to convert a horizontal table to a single instance of
a class, the table must only contain the header row and one data row.

Given I entered the following data into the new account form:
| Name | Birthdate | Height In Inches | Bank Account Balance | # Header␣

→˓row (property names)
| John Galt | 2/2/1902 | 72 | 1234.56 | # Data row␣

→˓(property values)

This layout is desirable when the table does not require too many values. This helps save vertical space by
consuming more horizontal space in your feature file.

Important: use the CreateSet<T> method described below to create a collection of objects if more than
one data row is needed.

Deciding to use a vertical or horizontal table layout is subjective. Choose the layout that is easiest to read given the
information in the table.

Reqnroll matches table values to property names regardless of letter case. To Reqnroll, “BankAccount”, “Bank Ac-
count”, “BANK ACCOUNT” and “bank account” will all map to a property named BankAccount. More information
on column naming is below.

Using CreateInstance with a Class

You can map a table to a custom class you write. The following example will map the tables described above in the
vertical or horizontal layouts. First, create the class:

Listing 89: C# File

// Class used to map table
class Account
{

public string Name { get; set; }
public int HeightInInches { get; set; }
public decimal BankAccountBalance { get; set; }

}

Remember that property names should match values in the table in your scenario. Reqnroll requires properties to
have both a public getter and a public setter. Most built-in .NET types are converted automatically. This includes the
following types:

• int and int?

1.5. Automation Features 65

Reqnroll

• decimal and decimal?

• bool and bool?

• DateTime and DateTime?

Plus many more.

The name of the class is put in place of the generic type T in the call to CreateInstance<T>. An example step
definition is below.

Listing 90: Step Definition File

[Given(@"Given I entered the following data into the new account form:")]
public void GivenIEnteredTheFollowingDataIntoTheNewAccountForm(DataTable table)
{

var account = table.CreateInstance<Account>();
// ^^^^^^^

// account.Name is "John Galt"
// account.HeightInInches is 72
// account.BankAccountBalance is 1234.56

}

The CreateInstance<T>method will create the Account object and set properties according to what can be read from
the table. Table cell values are strings by default. These strings are converted to the type specified for each property
of the destination class. For example, the string "1234.56" in the table is converted to a decimal value before being
assigned to the BankAccountBalance property.

Using CreateInstance with ValueTuple

Alternatively you can use ValueTuples and destructuring:

Listing 91: Step Definition File

[Given(@"Given I entered the following data into the new account form:")]
public void GivenIEnteredTheFollowingDataIntoTheNewAccountForm(DataTable table)
{

var account = table.CreateInstance<(string name, DateTime birthDate, int␣
→˓heightInInches, decimal bankAccountBalance)>();

// account.name is "John Galt"
// account.heightInInches is 72
// account.bankAccountBalance is 1234.56

}

Important: In the case of tuples, _**you need to have the same number of parameters␣
→˓and types; parameter names do not matter**_, as ValueTuples do not hold parameter␣
→˓names at runtime using reflection.

**Scenarios with more than 7 properties are not currently supported when converting to␣
→˓ValueTuple, and you will receive an exception if you try to map more than 7 properties.
→˓**

The next section describes how to convert a horizontal table with more than one data row␣
(continues on next page)

66 Chapter 1. How to use the documentation

https://github.com/reqnroll/Reqnroll/tree/main/Reqnroll/Assist/ValueRetrievers

Reqnroll

(continued from previous page)

→˓to a collection of objects.

`CreateSet<T>`

The `CreateSet<T>` extension method of the `DataTable` class converts the table into an␣
→˓enumerable set of objects. For example, assume you have the following step:

```gherkin
Given these products exist

| Sku | Name | Price |
| BOOK1 | Atlas Shrugged | 25.04 |
| BOOK2 | The Fountainhead | 20.15 |

And you want to map rows in that table to the following class:

Listing 92: C# File

public class Product
{

public string Sku { get; set; }
public string Name { get; set; }
public decimal Price { get; set; }

}

You can convert the table to a collection of Product objects in your step definition using CreateSet<Product>():

Listing 93: Step Definition File

[Given(@"Given these products exist")]
public void GivenTheseProductsExist(DataTable table)
{

var products = table.CreateSet<Product>();
// ...

}

The CreateSet<T> method returns an IEnumerable<T> based on the matching data in the table. It contains the
values for each object, making appropriate type conversions from string to the related property. Column headers are
matched to property names in the same way as CreateInstance<T>.

CompareToInstance<T>

The CompareToInstance<T> extension method of the DataTable class makes it easy to compare the properties of
an object to the table in your scenario. For example, you have a class like this:

Listing 94: C# File

public class Person
{

public string FirstName { get; set;}
public string LastName { get; set; }
public int YearsOld { get; set; }

}

1.5. Automation Features 67



Reqnroll

You want to compare it to a table in a step like this:

Listing 95: Feature File

Then the person should have the following values
| Field | Value |
| First Name | John |
| Last Name | Galt |
| Years Old | 54 |

You can assert that the properties match with this simple step definition:

Listing 96: Step Definition File

[Binding]
public class PersonSteps
{

ScenarioContext _scenarioContext;

public PersonSteps(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[Then("the person should have the following values")]
public void ThenThePersonShouldHaveTheFollowingValues(DataTable table){

// you don't have to get person this way, this is just for demonstration purposes
var person = _scenarioContext.Get<Person>();

table.CompareToInstance<Person>(person);
}

}

If FirstName is not “John”, LastName is not “Galt”, or YearsOld is not 54, a descriptive error showing the differences
is thrown.

If the values match, no exception is thrown, and Reqnroll continues to process your scenario.

CompareToSet<T>

The CompareToSet<T> extension method of the DataTable class works similarly to CompareToInstance<T>, ex-
cept it compares a collection of objects. For example, you have a class like this:

Listing 97: C# File

public class Account
{

public string Id { get; set;}
public string FirstName { get; set;}
public string LastName { get; set;}
public string MiddleName { get; set;}

}

You want to test that your system returns a specific set of accounts, like this:

68 Chapter 1. How to use the documentation



Reqnroll

Listing 98: Feature File

Then I get back the following accounts
| Id | First Name | Last Name |
| 1 | John | Galt |
| 2 | Howard | Roark |

You can test your results with one call to CompareToSet:

Listing 99: Step Definition File

[Binding]
public class AccountSteps
{

ScenarioContext _scenarioContext;

public AccountSteps(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[Then("I get back the following accounts")]
public void ThenIGetBackTheFollowingAccounts(DataTable table)
{

// (or get the accounts from the database or web service)
var accounts = _scenarioContext.Get<IEnumerable<Account>>();

table.CompareToSet<Account>(accounts);
}

}

In this example, CompareToSet<T> checks that two accounts are returned, and only tests the properties you defined in
the table. It does not test the order of the objects, only that one was found that matches. If no record matching the
properties in your table is found, an exception is thrown that includes the row number(s) that do not match up.

Comparing Sets When Order Matters

In use cases where the order should match, pass true as the second argument to CompareToSet:

1.5. Automation Features 69



Reqnroll

Listing 100: Step Definition File

table.CompareToSet<Account>(accounts, true);
// ^^^^

In addition to throwing an exception if property values do not match, Reqnroll will throw an exception if the order of
the accounts doesn’t match your expectations. This is useful when the order of things is determined by business rules,
or in use cases like search results.

Column naming

The Reqnroll DataTable helpers use the values in your table to determine what properties to set in your object. However,
the names of the columns do not need to match exactly - whitespace and casing is ignored. For example, the following
two tables are treated as identical:

Listing 101: Feature File

| FirstName | LastName | DateOfBirth | HappinessRating |

Listing 102: Feature File

| First name | Last name | Date of birth | HAPPINESS rating |

This allows you to make your tables more readable to others.

Aliasing

If you have properties in your objects that are known by different terms within the business domain, these can be
Aliased in your model by applying the attribute TableAliases. This attribute takes a collection of aliases as regular
expressions that can be used to refer to the property in question.

For example, if you have an object representing an Employee, you might want to alias the Surname property:

Listing 103: C# File

public class Employee
{

public string FirstName { get; set; }
public string MiddleName { get; set; }

[TableAliases("Last[]?Name", "Family[]?Name")]
public string Surname { get; set; }

}

Test writers can then refer to this property as “Surname”, “Last Name”, “Lastname”, “Family Name” or “FamilyName”,
and it will still be mapped to the correct column in your scenario.

The TableAliases attribute can be applied to a field, a property as a single attribute with multiple regular expressions,
or as multiple attributes, depending on your preference.

70 Chapter 1. How to use the documentation



Reqnroll

Extensions

Out-of-the-box, the Reqnroll table helpers knows how to handle most C# base types. Types like String, Bool,
Enum, Int, Decimal, DateTime, etc. are all covered (see full list of supported times). If you want to cover more
types, including your own custom types, you can do so by registering your own instances of IValueRetriever and
IValueComparer.

For example, you have a complex object like this:

Listing 104: C# File

public class Shirt
{

public string Name { get; set; }
public Color Color { get; set; }

}

You have a table like this:

Listing 105: Feature File

| Name | Color |
| XL | Blue |
| L | Red |

If you want to map Blue and Red to the appropriate instance of the Color class, you need to create an instance of
IValueRetriever that can convert the strings to the Color instance.

You can register your custom IValueRetriever (and/or an instance of IValueComparer if you want to compare
colors) like this:

Listing 106: Step Definition File

[Binding]
public static class Hooks1
{

[BeforeTestRun]
public static void BeforeTestRun()
{

Service.Instance.ValueRetrievers.Register(new ColorValueRetriever());
Service.Instance.ValueComparers.Register(new ColorValueComparer());

}
}

Examples on implementing these interfaces can be found as follows:

• IValueRetriever

• IValueComparer

1.5. Automation Features 71

https://github.com/reqnroll/Reqnroll/tree/main/Reqnroll/Assist/ValueRetrievers
https://github.com/reqnroll/Reqnroll/tree/main/Reqnroll/Assist/ValueRetrievers
https://github.com/reqnroll/Reqnroll/tree/main/Reqnroll/Assist/ValueComparers


Reqnroll

Configuration

Some built in classes support configuration to adjust the default behaviour.

• DateTimeValueRetriever and DateTimeOffsetValueRetriever have a static DateTimeStyles property to adjust the
style used to parse date times.

Example of usage:

Listing 107: Hook File

[Binding]
public static class Hooks1
{

[BeforeTestRun]
public static void BeforeTestRun()
{

DateTimeValueRetriever.DateTimeStyles = DateTimeStyles.AdjustToUniversal |␣
→˓DateTimeStyles.AssumeUniversal;

}
}

NullValueRetriever

Note: If you are not looking to transform data from DataTable objects, but rather looking to transform values in your
step definitions, you’ll likely want to look at Step Argument Conversions instead.

By default, non-specified (empty string) values are considered:

• An empty string for String and System.Uri values

• A null value for Nullable<> primitive types

• An error for non-nullable primitive types

To specify null values explicitly, add a NullValueRetriever to the set of registered retrievers, specifying the text to
be treated as a null value, e.g.:

Listing 108: Hook File

[Binding]
public static class Hooks1
{

[BeforeTestRun]
public static void BeforeTestRun()
{

Service.Instance.ValueRetrievers.Register(new NullValueRetriever("<null>"));
}

}

Note: The comparison is case-insensitive.

72 Chapter 1. How to use the documentation

https://github.com/reqnroll/Reqnroll/tree/main/Reqnroll/Assist/ValueRetrievers/DateTimeValueRetriever.cs
https://github.com/reqnroll/Reqnroll/tree/main/Reqnroll/Assist/ValueRetrievers/DateTimeOffsetValueRetriever.cs


Reqnroll

Using LINQ-based instance and set comparison

The CompareToSet extension method only checks for equivalence of collections which is a reasonable default. The
Reqnroll.Assist namespace also contains extension methods for With based operations.

Consider the following steps:

Listing 109: Feature File

Scenario: Matching music collections
When I have a music collection

| Artist | Album |
| Beatles | Rubber Soul |
| Pink Floyd | Animals |
| Muse | Absolution |

Then it should match
| Artist | Album |
| Beatles | Rubber Soul |
| Pink Floyd | Animals |
| Muse | Absolution |

And it should match
| Artist | Album |
| Beatles | Rubber Soul |
| Muse | Absolution |
| Pink Floyd | Animals |

And it should exactly match
| Artist | Album |
| Beatles | Rubber Soul |
| Pink Floyd | Animals |
| Muse | Absolution |

But it should not match
| Artist | Album |
| Beatles | Rubber Soul |
| Queen | Jazz |
| Muse | Absolution |

And it should not match
| Artist | Album |
| Beatles | Rubber Soul |
| Muse | Absolution |

And it should not exactly match
| Artist | Album |
| Beatles | Rubber Soul |
| Muse | Absolution |
| Pink Floyd | Animals |

With LINQ-based operations each of the above comparisons can be expressed using a single line of code:

Listing 110: Step Definition File

[Binding]
public class MusicCollectionSteps
{

ScenarioContext _scenarioContext;

(continues on next page)

1.5. Automation Features 73



Reqnroll

(continued from previous page)

public MusicCollectionSteps(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[When(@"I have a music collection")]
public void WhenIHaveAMusicCollection(DataTable table)
{

var collection = table.CreateSet<Item>();

_scenarioContext.Add("Collection", collection);
}

[Then(@"it should match")]
public void ThenItShouldMatch(DataTable table)
{

var collection = _scenarioContext["Collection"] as IEnumerable<Item>;

Assert.IsTrue(table.RowCount == collection.Count() && table.ToProjection<Item>().
→˓Except(collection.ToProjection()).Count() == 0);

}

[Then(@"it should exactly match")]
public void ThenItShouldExactlyMatch(DataTable table)
{

var collection = _scenarioContext["Collection"] as IEnumerable<Item>;

Assert.IsTrue(table.ToProjection<Item>().SequenceEqual(collection.
→˓ToProjection()));

}

[Then(@"it should not match")]
public void ThenItShouldNotMatch(DataTable table)
{

var collection = _scenarioContext["Collection"] as IEnumerable<Item>;

Assert.IsFalse(table.RowCount == collection.Count() && table.ToProjection<Item>
→˓().Except(collection.ToProjection()).Count() == 0);

}

[Then(@"it should not exactly match")]
public void ThenItShouldNotExactlyMatch(DataTable table)
{

var collection = _scenarioContext["Collection"] as IEnumerable<Item>;

Assert.IsFalse(table.ToProjection<Item>().SequenceEqual(collection.
→˓ToProjection()));

}
}

In a similar way we can implement containment validation:

74 Chapter 1. How to use the documentation



Reqnroll

Listing 111: Feature File

Scenario: Containment
When I have a music collection

| Artist | Album |
| Beatles | Rubber Soul |
| Pink Floyd | Animals |
| Muse | Absolution |

Then it should contain all items
| Artist | Album |
| Beatles | Rubber Soul |
| Muse | Absolution |

But it should not contain all items
| Artist | Album |
| Beatles | Rubber Soul |
| Muse | Resistance |

And it should not contain any of items
| Artist | Album |
| Beatles | Abbey Road |
| Muse | Resistance |

Listing 112: Step Definition File

[Binding]
public class MusicCollectionSteps
{

ScenarioContext _scenarioContext;

public MusicCollectionSteps(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[Then(@"it should contain all items")]
public void ThenItShouldContainAllItems(DataTable table)
{

var collection = _scenarioContext["Collection"] as IEnumerable<Item>;

Assert.IsTrue(table.ToProjection<Item>().Except(collection.ToProjection()).
→˓Count() == 0);

}

[Then(@"it should not contain all items")]
public void ThenItShouldNotContainAllItems(DataTable table)
{

var collection = _scenarioContext["Collection"] as IEnumerable<Item>;

Assert.IsFalse(table.ToProjection<Item>().Except(collection.ToProjection()).
→˓Count() == 0);

}

[Then(@"it should not contain any of items")]
(continues on next page)

1.5. Automation Features 75



Reqnroll

(continued from previous page)

public void ThenItShouldNotContainAnyOfItems(DataTable table)
{

var collection = _scenarioContext["Collection"] as IEnumerable<Item>;

Assert.IsTrue(table.ToProjection<Item>().Except(collection.ToProjection()).
→˓Count() == table.RowCount);

}
}

What if Artist and Album are properties of different entities? Look at this piece of code:

Listing 113: C# File

var collection = from artist in ctx.Artists
where artist.Name == "Muse"
join album in ctx.Albums

on album.ArtistId equals artist.ArtistId
select new
{

Artist = artist.Name,
Album = album.Name

};

The Reqnroll.Assist namespace has a generic class named EnumerableProjection<T>. If a type T is known at
compile time, the ToProjectionmethod converts a table or a collection into an instance of EnumerableProjection:

Listing 114: C# File

table.ToProjection<Item>();

But if we need to compare a table with the collection of anonymous types from the example above, we need to express
this type in some way so ToProjection will be able to build an instance of specialized EnumerableProjection. This
is done by sending a collection as an argument to ToProjection. And to support both sets and instances and avoid
naming ambiguity, corresponding methods are called ToProjectionOfSet and ToProjectionOfInstance:

Listing 115: C# File

table.ToProjectionOfSet(collection);
table.ToProjectionOfInstance(instance);

Here are the definitions of Reqnroll DataTable extensions methods that convert tables and collections of IEnumerables
to EnumerableProjection:

Listing 116: C# File

public static IEnumerable<Projection<T>> ToProjection<T>(this IEnumerable<T> collection,␣
→˓DataTable table = null)
{

return new EnumerableProjection<T>(table, collection);
}

public static IEnumerable<Projection<T>> ToProjection<T>(this DataTable table)
{

(continues on next page)

76 Chapter 1. How to use the documentation



Reqnroll

(continued from previous page)

return new EnumerableProjection<T>(table);
}

public static IEnumerable<Projection<T>> ToProjectionOfSet<T>(this DataTable table,␣
→˓IEnumerable<T> collection)
{

return new EnumerableProjection<T>(table);
}

public static IEnumerable<Projection<T>> ToProjectionOfInstance<T>(this DataTable table,␣
→˓T instance)
{

return new EnumerableProjection<T>(table);
}

Note that last arguments of ToProjectionOfSet and ToProjectionOfInstance methods are not used in method
implementation. Their only purpose is to bring information about T, so the EnumerableProjection adapter class can
be built properly. Now we can perform the following comparisons with anonymous types collections and instances:

Listing 117: C# Test File

[Test]
public void Table_with_subset_of_columns_with_matching_values_should_match_collection()
{

var table = CreateTableWithSubsetOfColumns();

table.AddRow(1.ToString(), "a");
table.AddRow(2.ToString(), "b");

var query = from x in testCollection
select new { x.GuidProperty, x.IntProperty, x.StringProperty };

Assert.AreEqual(0, table.ToProjectionOfSet(query).Except(query.ToProjection()).
→˓Count());
}

[Test]
public void Table_with_subset_of_columns_should_be_equal_to_matching_instance()
{

var table = CreateTableWithSubsetOfColumns();

table.AddRow(1.ToString(), "a");

var instance = new { IntProperty = testInstance.IntProperty, StringProperty =␣
→˓testInstance.StringProperty };

Assert.AreEqual(table.ToProjectionOfInstance(instance), instance);
}

1.5. Automation Features 77



Reqnroll

1.5.10 Sharing Data between Bindings

In many cases, different bindings need to exchange data during execution. Reqnroll provides several ways of sharing
data between bindings.

Instance Fields

If the binding is an instance method, Reqnroll creates a new instance of the containing class for every scenario execution.
Following the entity-based step organization rule, defining instance fields in the binding classes is an efficient way of
sharing data between different steps of the same scenario that are related to the same entity.

The following example saves the result of the MVC action to an instance field in order to make assertions for it in a
“then” step.

Listing 118: Step Definition File

[Binding]
public class SearchSteps
{

private ActionResult actionResult;

[When(@"I perform a simple search on '(.*)'")]
public void WhenIPerformASimpleSearchOn(string searchTerm)
{

var controller = new CatalogController();
actionResult = controller.Search(searchTerm);

}

[Then(@"the book list should exactly contain book '(.*)'")]
public void ThenTheBookListShouldExactlyContainBook(string title)
{

var books = actionResult.Model<List<Book>>();
CustomAssert.Any(books, b => b.Title == title);

}
}

Context Injection

Reqnroll supports a very simple dependency framework that is able to instantiate and inject class instances for the
scenarios. With this feature you can group the shared state to context-classes, and inject them into every binding class
that is interested in that shared state.

See more about this feature in the Context Injection page.

The following example defines a context class to store referred books. The context class is injected to a binding class.

Listing 119: C# File

public class CatalogContext
{

public CatalogContext()
{

ReferenceBooks = new ReferenceBookList();
}

(continues on next page)

78 Chapter 1. How to use the documentation

https://github.com/cucumber/cucumber/wiki/Step-Organisation


Reqnroll

(continued from previous page)

public ReferenceBookList ReferenceBooks { get; set; }
}

Listing 120: Step Definition File

[Binding]
public class BookSteps
{

private readonly CatalogContext _catalogContext;

public BookSteps(CatalogContext catalogContext)
{

_catalogContext = catalogContext;
}

[Given(@"the following books")]
public void GivenTheFollowingBooks(DataTable table)
{

foreach (var book in table.CreateSet<Book>())
{

SaveBook(book);
_catalogContext.ReferenceBooks.Add(book.Id, book);

}
}

}

ScenarioContext and FeatureContext

Reqnroll provides two context instances.

The ScenarioContext is created for each individual scenario execution and it is disposed when the scenario execution
has been finished.

The FeatureContext is created when the first scenario is executed from a feature and disposed when the execution
of the feature’s scenarios ends. In the rare case, when you need to preserve state in the context of a feature, the
FeatureContext instance can be used as a property bag.

Static Fields

Generally, using static fields can cause synchronization and maintenance issues and makes the unit testability hard.
As the Reqnroll tests are executed synchronously and people usually don’t write unit tests for the tests itself, these
arguments are just partly valid for binding codes.

In some cases sharing a state through static fields can be an efficient solution.

1.5. Automation Features 79



Reqnroll

1.5.11 Context Injection

Reqnroll supports a very simple dependency framework that is able to instantiate and inject class instances for scenarios.
This feature allows you to group the shared state in context classes, and inject them into every binding class that needs
access to that shared state.

To use context injection:

1. Create your POCOs (plain old CLR object), simple .NET classes, representing the shared data.

2. Define them as constructor parameters in every binding class that requires them.

3. Save the constructor argument to instance fields, so you can use them in the step definitions.

Rules:

• The life-time of these objects is limited to a scenario’s execution.

• If the injected objects implement IDisposable, they will be disposed after the scenario is executed.

• The injection is resolved recursively, i.e. the injected class can also have dependencies.

• Resolution is done using public constructors only.

• If there are multiple public constructors, Reqnroll takes the first one.

The container used by Reqnroll can be customized, e.g. you can include object instances that have already been created,
or modify the resolution rules. See the Advanced options section below for details.

Examples

In the first example we define a POCO for holding the data of a person and use it in a given and a then step that are
placed in different binding classes.

Listing 121: C# File

public class PersonData // the POCO for sharing person data
{
public string FirstName;
public string LastName;

}

Listing 122: Step Definition File

[Binding]
public class MyStepDefs
{
private readonly PersonData personData;
public MyStepDefs(PersonData personData) // use it as ctor parameter
{
this.personData = personData;

}

[Given]
public void The_person_FIRSTNAME_LASTNAME(string firstName, string lastName)
{
personData.FirstName = firstName; // write into the shared data
personData.LastName = lastName;

(continues on next page)

80 Chapter 1. How to use the documentation



Reqnroll

(continued from previous page)

//... do other things you need
}

}

[Binding]
public class OtherStepDefs // another binding class needing the person
{
private readonly PersonData personData;
public OtherStepDefs(PersonData personData) // ctor parameter here too
{
this.personData = personData;

}

[Then]
public void The_person_data_is_properly_displayed()
{
var displayedData = ... // get the displayed data from the app
// read from shared data, to perform assertions

Assert.AreEqual(personData.FirstName + " " + personData.LastName,
displayedData, "Person name was not displayed properly");

}
}

The following example defines a context class to store referred books. The context class is injected into a binding class.

Listing 123: C# File

public class CatalogContext
{

public CatalogContext()
{

ReferenceBooks = new ReferenceBookList();
}

public ReferenceBookList ReferenceBooks { get; set; }
}

Listing 124: Step Definition File

[Binding]
public class BookSteps
{

private readonly CatalogContext _catalogContext;

public BookSteps(CatalogContext catalogContext)
{

_catalogContext = catalogContext;
}

[Given(@"the following books")]
public void GivenTheFollowingBooks(DataTable table)
{

(continues on next page)

1.5. Automation Features 81



Reqnroll

(continued from previous page)

foreach (var book in table.CreateSet<Book>())
{

SaveBook(book);
_catalogContext.ReferenceBooks.Add(book.Id, book);

}
}

}

Advanced options

The container used by Reqnroll can be customized, e.g. you can include object instances that have already been created,
or modify the resolution rules.

You can customize the container from a plugin or a before scenario hook. The class customizing the injection rules
has to obtain an instance of the scenario execution container (an instance of BoDi.IObjectContainer). This can be
done through constructor injection (see example below).

The following example adds the Selenium web driver to the container, so that binding classes can specify IWebDriver
dependencies (a constructor argument of type IWebDriver).

Listing 125: Hook File

[Binding]
public class WebDriverSupport
{
private readonly IObjectContainer objectContainer;

public WebDriverSupport(IObjectContainer objectContainer)
{
this.objectContainer = objectContainer;

}

[BeforeScenario]
public void InitializeWebDriver()
{
var webDriver = new FirefoxDriver();
objectContainer.RegisterInstanceAs<IWebDriver>(webDriver);

}
}

Custom Dependency Injection Frameworks

As mentioned above, the default Reqnroll container is IObjectContainer which is recommended for most scenarios.
However, you may have situations where you need more control over the configuration of the dependency injection, or
make use of an existing dependency injection configuration within the project you are testing, e.g. pulling in service
layers for assisting with assertions in Then stages.

82 Chapter 1. How to use the documentation



Reqnroll

Consuming existing plugins

You can find the list of available plugins in the Available Plugins page.

To make use of these plugins, you need to add a reference to the plugin:

Listing 126: .NET CLI

dotnet add package Reqnroll.Autofac

This tells Reqnroll to load the runtime plugin and allows you to create an entry point to use this functionality. Once set
up, your dependencies are injected into steps and bindings like they are with the IObjectContainer, but behind the
scenes it will be pulling those dependencies from the DI container you added.

Note: One thing to note here is that each plugin has its own conventions for loading the entry point. This is often
a static class with a static method containing an attribute that is marked by the specific plugin. You should check the
requirements of the plugins you are using.

You can load all your dependencies within this handler section, or you can to inject the relevant IoC container into your
binding sections like this:

Listing 127: Hook File

[Binding]
public class WebDriverPageHooks
{

private readonly IKernel _kernel;

// Inject in our container (using Ninject here)
public WebDriverPageHooks(IKernel kernel)
{ _kernel = kernel; }

private IWebDriver SetupWebDriver()
{

var options = new ChromeOptions();
options.AddArgument("--start-maximized");
options.AddArgument("--disable-notifications");
return new ChromeDriver(options);

}

[BeforeScenario]
public void BeforeScenario()
{

var webdriver = SetupWebDriver();
_kernel.Bind<IWebDriver>().ToConstant(webdriver);

}

[AfterScenario]
public void AfterScenario()
{

var webDriver = _kernel.Get<IWebDriver>();

// Output any screenshots or log dumps etc
(continues on next page)

1.5. Automation Features 83



Reqnroll

(continued from previous page)

webDriver.Close();
webDriver.Dispose();

}
}

This gives you the option of either loading types up front or creating types within your binding sections so you can
dispose of them as necessary.

Creating your own

We recommend looking at the autofac example and plugins documentation and following these conventions.

Note: Remember to adhere to the plugin documentation and have your assembly end in .ReqnrollPlugin e.g.
Reqnroll.AutoFac.ReqnrollPlugin. Internal namespaces can be anything you want, but the assembly name must
follow this naming convention or Reqnroll will be unable to locate it.

1.5.12 Scenario Context

ScenarioContext provides access to several functions, which are demonstrated using the following scenarios.

Accessing the ScenarioContext

In Bindings

To access the ScenarioContext you have to get it via context injection.

Example:

Listing 128: Step Definition File

[Binding]
public class Binding
{

private ScenarioContext _scenarioContext;

public Binding(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

}

Now you can access the ScenarioContext in all your step definitions with the _scenarioContext field.

84 Chapter 1. How to use the documentation



Reqnroll

In Hooks

Before/AfterTestRun

Accessing the ScenarioContext is not possible, as no Scenario is executed when the hook is called.

Before/AfterFeature

Accessing the ScenarioContext is not possible, as no Scenario is executed when the hook is called.

Before/AfterScenario

Accessing the ScenarioContext is done like in normal bindings

Before/AfterStep

Accessing the ScenarioContext is done like in normal bindings

Migrating from ScenarioContext.Current

The ScenarioContext.Current static accessor is obsolete, to make clear that you that you should avoid using these
properties in future. The reason for moving away from these properties is that they do not work when running scenarios
in parallel.

So how do you now access ScenarioContext?

Replace the code with ScenarioContext.Current. . .

Listing 129: Step Definition File

[Binding]
public class Bindings
{

[Given(@"I have entered (.*) into the calculator")]
public void GivenIHaveEnteredIntoTheCalculator(int number)
{

ScenarioContext.Current["Number1"] = number;
}

[BeforeScenario()]
public void BeforeScenario()
{

Console.WriteLine("Starting " + ScenarioContext.Current.ScenarioInfo.Title);
}

}

. . . to use Context-Injection to acquire an instance of ScenarioContext by requesting it via the constructor.

1.5. Automation Features 85



Reqnroll

Listing 130: Step Definition File

[Binding]
public class Bindings
{

private readonly ScenarioContext _scenarioContext;

public Bindings(ScenarioContext scenarioContext)
{

_scenarioContext = scenarioContext;
}

[Given(@"I have entered (.*) into the calculator")]
public void GivenIHaveEnteredIntoTheCalculator(int number)
{

_scenarioContext["Number1"] = number;
}

[BeforeScenario()]
public void BeforeScenario()
{

Console.WriteLine("Starting " + _scenarioContext.ScenarioInfo.Title);
}

}

ScenarioContext.Pending

See Mark Steps as Not Implemented

Storing data in the ScenarioContext

ScenarioContext helps you store values in a dictionary between steps. This helps you to organize your step definitions
better than using private variables in step definition classes.

There are some type-safe extension methods that help you to manage the contents of the dictionary in a safer way. To do
so, you need to include the namespace Reqnroll.Assist, since these methods are extension methods of ScenarioContext.

ScenarioContext.ScenarioInfo

ScenarioContext.ScenarioInfo allows you to access information about the scenario currently being executed,
such as its title and scenario and feature tags:

In the .feature file:

Listing 131: Feature File

@feature_tag
Feature: My feature

@rule_tag
Rule: My rule

(continues on next page)

86 Chapter 1. How to use the documentation



Reqnroll

(continued from previous page)

@scenario_tag1 @scenario_tag2
Scenario: Showing information of the scenario

When I execute any scenario
Then the ScenarioInfo contains the following information

| Field | Value |
| Title | Showing information of the scenario |
| Tags | scenario_tag1, scenario_tag2 |
| CombinedTags | scenario_tag1, scenario_tag2, feature_tag, rule_tag |

and in the step definition:

Listing 132: Step Definition File

private class ScenarioInformation
{

public string Title { get; set; }
public string[] Tags { get; set; }
public string[] CombinedTags { get; set; }

}

[When(@"I execute any scenario")]
public void ExecuteAnyScenario(){}

[Then(@"the ScenarioInfo contains the following information")]
public void ScenarioInfoContainsInterestingInformation(DataTable table)
{

// Create our small DTO for the info from the step
var fromStep = table.CreateInstance<ScenarioInformation>();
fromStep.Tags = table.Rows[0]["Value"].Split(',');

// Short-hand to the scenarioInfo
var si = _scenarioContext.ScenarioInfo;

// Assertions
si.Title.Should().Equal(fromStep.Title);
si.Tags.Should().BeEquivalentTo(fromStep.Tags);
si.CombinedTags.Should().BeEquivalentTo(fromStep.CombinedTags);

}

ScenarioContext.ScenarioInfo also provides access to the current set of arguments from the scenario’s examples
in the form of an IOrderedDictionary:

Listing 133: Feature File

Scenario: Accessing the current example

When I use examples in my scenario
Then the examples are available in ScenarioInfo

Examples:
| Sport | TeamSize |

(continues on next page)

1.5. Automation Features 87



Reqnroll

(continued from previous page)

| Soccer | 11 |
| Basketball | 6 |

Listing 134: Step Definition File

public class ScenarioExamplesDemo
{

private ScenarioInfo _scenarioInfo;

public ScenarioExamplesDemo(ScenarioInfo scenarioInfo)
{

_scenarioInfo = scenarioInfo;
}

[When(@"I use examples in my scenario")]
public void IUseExamplesInMyScenario() {}

[Then(@"the examples are available in ScenarioInfo")]
public void TheExamplesAreAvailableInScenarioInfo()
{

var currentArguments = _scenarioInfo.Arguments;
var currentSport = currentArguments["Sport"];
var currentTeamSize = currentArguments["TeamSize"];
Console.WriteLine($"The current sport is {currentSport}");
Console.WriteLine($"The current sport allows teams of {currentTeamSize} players

→˓");
}

}

Another use is to check if an error has occurred, which is possible with the ScenarioContext.TestError property,
which simply returns the exception.

You can use this information for “error handling”. Here is an uninteresting example:

In the feature file. . .

Listing 135: Feature File

#This is not so easy to write a scenario for but I've created an AfterScenario-hook
@showingErrorHandling
Scenario: Display error information in AfterScenario
When an error occurs in a step

. . . and the step definition:

Listing 136: Step Definition File

[When("an error occurs in a step")]
public void AnErrorOccurs()
{

"not correct".Should().Equal("correct");
}

[AfterScenario("showingErrorHandling")]
(continues on next page)

88 Chapter 1. How to use the documentation



Reqnroll

(continued from previous page)

public void AfterScenarioHook()
{

if(_scenarioContext.TestError != null)
{

var error = _scenarioContext.TestError;
Console.WriteLine("An error ocurred:" + error.Message);
Console.WriteLine("It was of type:" + error.GetType().Name);

}
}

This is another example, that might be more useful:

Listing 137: Hook File

[AfterScenario]
public void AfterScenario()
{

if(_scenarioContext.TestError != null)
{

WebBrowser.Driver.CaptureScreenShot(_scenarioContext.ScenarioInfo.Title);
}

}

In this case, MvcContrib is used to capture a screenshot of the failing test and name the screenshot after the title of the
scenario.

ScenarioContext.CurrentScenarioBlock

Use ScenarioContext.CurrentScenarioBlock to query the “type” of step (Given, When or Then). This can be
used to execute additional setup/cleanup code right before or after Given, When or Then blocks.

In the feature file:

Listing 138: Feature File

Scenario: Show the type of step we're currently on
Given I have a Given step
And I have another Given step
When I have a When step
Then I have a Then step

. . . and the step definition:

Listing 139: Step Definition File

[Given("I have a (.*) step")]
[Given("I have another (.*) step")]
[When("I have a (.*) step")]
[Then("I have a (.*) step")]
public void ReportStepTypeName(string expectedStepType)
{

var stepType = _scenarioContext.CurrentScenarioBlock.ToString();
(continues on next page)

1.5. Automation Features 89



Reqnroll

(continued from previous page)

stepType.Should().Equal(expectedStepType);
}

ScenarioContext.StepContext

Sometimes you need to access the currently executed step, e.g. to improve tracing. Use the _scenarioContext.
StepContext property for this purpose.

1.5.13 Feature Context

Reqnroll provides access to the current test context using both FeatureContext and the more commonly used Scenar-
ioContext. FeatureContext persists for the duration of the execution of an entire feature, whereas ScenarioContext
only persists for the duration of a scenario.

Accessing the FeatureContext

in Bindings

To access the FeatureContext you have to get it via Context-Injection.

Example:

Listing 140: Step Definition File

[Binding]
public class Binding
{

private FeatureContext _featureContext;

public Binding(FeatureContext featureContext)
{

_featureContext = featureContext;
}

}

Now you can access the FeatureContext in all your Bindings with the _featureContext field.

in Hooks

Before/AfterTestRun

Accessing the FeatureContext is not possible, as no Feature is executed, when the hook is called.

90 Chapter 1. How to use the documentation



Reqnroll

Before/AfterFeature

You can get the FeatureContext via parameter of the static method.

Example:

Listing 141: Hook File

[Binding]
public class Hooks
{

[BeforeFeature]
public static void BeforeFeature(FeatureContext featureContext)
{

Console.WriteLine("Starting " + featureContext.FeatureInfo.Title);
}

[AfterFeature]
public static void AfterFeature(FeatureContext featureContext)
{

Console.WriteLine("Finished " + featureContext.FeatureInfo.Title);
}

}

Before/AfterScenario

Accessing the FeatureContext is done like in normal bindings

Before/AfterStep

Accessing the FeatureContext is done like in normal bindings

Storing data in the FeatureContext

FeatureContext implements Dictionary<string, object>. So you can use the FeatureContext like a property bag.

FeatureContext.FeatureInfo

FeatureInfo provides more information than ScenarioInfo, but it works the same:

In the feature file:

Listing 142: Feature File

Scenario: Showing information of the feature

When I execute any scenario in the feature
Then the FeatureInfo contains the following information

| Field | Value |
| Tags | showUpInScenarioInfo, andThisToo |
| Title | FeatureContext features |

(continues on next page)

1.5. Automation Features 91



Reqnroll

(continued from previous page)

| TargetLanguage | CSharp |
| Language | en-US |
| Description | In order to |

. . . and in the step definition:

Listing 143: Step Definition File

private class FeatureInformation
{

public string Title { get; set; }
public GenerationTargetLanguage TargetLanguage { get; set; }
public string Description { get; set; }
public string Language { get; set; }
public string[] Tags { get; set; }

}

[When(@"I execute any scenario in the feature")]
public void ExecuteAnyScenario() { }

[Then(@"the FeatureInfo contains the following information")]
public void FeatureInfoContainsInterestingInformation(DataTable table)
{

// Create our small DTO for the info from the step
var fromStep = table.CreateInstance<FeatureInformation>();
fromStep.Tags = table.Rows[0]["Value"].Split(',');

var fi = _featureContext.FeatureInfo;

// Assertions
fi.Title.Should().Equal(fromStep.Title);
fi.GenerationTargetLanguage.Should().Equal(fromStep.TargetLanguage);
fi.Description.Should().StartWith(fromStep.Description);
fi.Language.IetfLanguageTag.Should().Equal(fromStep.Language);
for (var i = 0; i < fi.Tags.Length - 1; i++)
{

fi.Tags[i].Should().Equal(fromStep.Tags[i]);
}

}

FeatureContext exposes a Binding Culture property that simply points to the culture the feature is written in (en-US
in our example).

92 Chapter 1. How to use the documentation



Reqnroll

1.6 Execution Features

This part contains details of the following topics.

1.6.1 Executing Reqnroll Scenarios

Reqnroll generates executable tests from the scenarios defined in feature files. In order to execute these tests you can
use your usual test execution tools.

Executing scenarios from console

From the console, you can use the dotnet test command.

1. Open a console

2. Change the current directory to the folder of your Reqnroll project (where the .csproj file is located)

3. Invoke dotnet test

Listing 144: Terminal

> dotnet test
Determining projects to restore...
All projects are up-to-date for restore.

[...]
Starting test execution, please wait...
[...]
Passed! - Failed: 0, Passed: 1, Skipped: 0, Total: 1, Duration: 76 ms -␣
→˓MyReqnrollProject.dll

Note: Running the dotnet test command automatically restores the dependencies and builds your project by de-
fault.

On Windows the test execution is also possible using the vstest.console.exe tool. For that, make sure you use a
Developer Command Prompt.

Listing 145: Developer Command Prompt

> vstest.console.exe .\bin\Debug\net8.0\MyReqnrollProject.dll

Executing scenarios from Visual Studio

Visual Studio contains a built-in test execution feature that can also be used for executing Reqnroll scenarios as well.
In addition to that, other test execution tools, like ReSharper or NCrunch can also be used.

1. From the Test menu, choose the Test Explorer command. The Test Explorer tool window will open.

2. Wait until the tests are listed in the Test Explorer window. You might need to build your project first.

3. Locate the scenario you would like execute and invoke Run from the context menu. You can also use the Run All
Tests In View button from the Test Explorer toolbar.

1.6. Execution Features 93

https://learn.microsoft.com/en-us/visualstudio/test/vstest-console-options?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/reference/command-prompt-powershell?view=vs-2022
https://www.jetbrains.com/resharper/
https://www.ncrunch.net/


Reqnroll

Note: Running the tests from the Test Explorer window will automatically save your files and build your project before
executing the tests.

1.6.2 Executing Specific Scenarios

Executing a subset or only specific scenarios might be important locally and on the build pipeline.

Reqnroll converts the tags in your feature files to test case categories:

• NUnit: Category or TestCategory

• MSTest: TestCategory

• xUnit: Trait (similar functionality, Reqnroll will insert a Trait attribute with Category name)

This category can be used to filter the test execution in your build pipeline.

Note: Incorrect filter can lead to no test getting executed.

You don’t have to include the @ prefix in the filter expression.

Learn more about the filters in Microsoft’s official documentation.

Examples

All the examples here are using TestCategory, but if you are using xUnit then you should use Category instead.

How to use the filters

Below are 2 scenarios where one of them has a tag: @done, and the other one does not have a tag.

Listing 146: Feature File

Feature: Breakfast

@done
Scenario: Eating cucumbers
Given there are 12 cucumbers
When I eat 5 cucumbers
Then I should have 7 cucumbers

Scenario: Use all the sugar
Given there is some sugar in the cup
When I put all the sugar to my coffee
Then the cup is empty

If we would like to run only the scenario with @done tag, then the filter should look like:

TestCategory=done

Below are 2 scenarios where one of them has a tag: @done, and the other one has @automated.

94 Chapter 1. How to use the documentation

https://docs.microsoft.com/en-us/dotnet/core/testing/selective-unit-tests?pivots=xunit


Reqnroll

Listing 147: Feature File

Feature: Breakfast

@done
Scenario: Eating cucumbers
Given there are 12 cucumbers
When I eat 5 cucumbers
Then I should have 7 cucumbers

@automated
Scenario: Use all the sugar
Given there is some sugar in the cup
When I put all the sugar to my coffee
Then the cup is empty

If we would like to run scenarios which have either @done or @automated:

TestCategory=done|TestCategory=automated

Below are 2 scenarios where one of them has a tag: @done, and the other one has @automated. There is also a @US123
tag at Feature level.

Listing 148: Feature File

@US123
Feature: Breakfast

@done
Scenario: Eating cucumbers
Given there are 12 cucumbers
When I eat 5 cucumbers
Then I should have 7 cucumbers

@automated
Scenario: Use all the sugar
Given there is some sugar in the cup
When I put all the sugar to my coffee
Then the cup is empty

If we would like to run only those scenarios, which have both @US123 and @done:

TestCategory=US123&TestCategory=done

Below are 2 scenarios where one of them has two tags: @done and @important. There is another scenario, which has
the @automated tag, and there is a @us123 tag at Feature level.

Listing 149: Feature File

@US123
Feature: Breakfast

(continues on next page)

1.6. Execution Features 95



Reqnroll

(continued from previous page)

@done @important
Scenario: Eating cucumbers
Given there are 12 cucumbers
When I eat 5 cucumbers
Then I should have 7 cucumbers

@automated
Scenario: Use all the sugar
Given there is some sugar in the cup
When I put all the sugar to my coffee
Then the cup is empty

If we would like to run only those scenarios, which have both @done and @important:

TestCategory=done&TestCategory=important

dotnet test

Use the --filter command-line option:

dotnet test --filter TestCategory=done

dotnet test --filter "TestCategory=us123&TestCategory=done"

dotnet test --filter "TestCategory=done|TestCategory=automated"

vstest.console.exe

Use the /TestCaseFilter command-line option:

vstest.console.exe "C:\Temp\BookShop.AcceptanceTests.dll" /TestCaseFilter:
→˓"TestCategory=done"

vstest.console.exe "C:\Temp\BookShop.AcceptanceTests.dll" /TestCaseFilter:
→˓"TestCategory=us123&TestCategory=done"

vstest.console.exe "C:\Temp\BookShop.AcceptanceTests.dll" /TestCaseFilter:
→˓"TestCategory=done|TestCategory=automated"

96 Chapter 1. How to use the documentation



Reqnroll

Azure DevOps - Visual Studio Test task

The filter expression should be provided in the “Test filter criteria” setting in the Visual Studio Test task:

1.6. Execution Features 97



Reqnroll

Azure DevOps - .NET Core task

Alternatively you could use the dotnet task (DotNetCoreCLI) to run your tests. This works on all kinds of build agents:

- task: DotNetCoreCLI@2
displayName: 'dotnet test'
inputs:
command: test
projects: 'BookShop.AcceptanceTests'
arguments: '--filter "TestCategory=done"'

- task: DotNetCoreCLI@2
displayName: 'dotnet test'
inputs:
command: test
projects: 'BookShop.AcceptanceTests'
arguments: '--filter "TestCategory=us123&TestCategory=done"'

98 Chapter 1. How to use the documentation



Reqnroll

1.6.3 Mark Steps as Not Implemented

To mark a step as not implemented at runtime, you need to throw a PendingStepException. The Runtime of Reqnroll
will detect this and will report the appropriate test result back to your test runner.

There are multiple ways to throw the exception.

Throwing the PendingStepException

You can throw the exception using a throw statement. In this case you have the possibility to provide a custom message.

Default Message

Listing 150: Step Definition File

[When("I set the current ScenarioContext to pending")]
public void WhenIHaveAPendingStep()
{

throw new PendingStepException();
}

Custom Message

Listing 151: Step Definition File

[When("I set the current ScenarioContext to pending")]
public void WhenIHaveAPendingStep()
{

throw new PendingStepException("custom pendingstep message");
}

Using ScenarioContext.Pending helper method

The ScenarioContext class has a static helper method to throw the default PendingStepException.

1.6. Execution Features 99



Reqnroll

Listing 152: Step Definition File

[When("I set the current ScenarioContext to pending")]
public void WhenIHaveAPendingStep()
{

ScenarioContext.Pending();
}

1.6.4 Skipping Scenarios

You can skip programmatically scenarios using the IUnitTestRuntimeProvider interface.

Example Code

Listing 153: Step Definition File

[Binding]
public sealed class StepDefinitions
{

private readonly IUnitTestRuntimeProvider _unitTestRuntimeProvider;

public CalculatorStepDefinitions(IUnitTestRuntimeProvider unitTestRuntimeProvider)
{

_unitTestRuntimeProvider = unitTestRuntimeProvider;
}

[When("your binding")]
public void YourBindingMethod()
{

_unitTestRuntimeProvider.TestIgnore("This scenario is always skipped");
}

}

Ignoring is like skipping the scenario. Be careful, as it behaves a little bit different for the different unit test runners
(xUnit, NUnit, MSTest).

Limitations

Currently this works only in step definitions. It is not possible to use it in hooks.

1.6.5 Test Results

When Reqnroll tests are executed, the execution engine processes the test steps, executing the necessary test logic and
either finishing successfully or failing for various reasons.

100 Chapter 1. How to use the documentation



Reqnroll

Test Passes

While executing the tests, the engine outputs information about the execution to the test output. In some cases it makes
sense to investigate the test output even if the test passes.

By default, the test output includes the executed test steps, the invoked test logic methods (bindings) and the execution
time for longer operations. You can configure the information displayed in the test output.

Test Fails due to an Error

A test can fail because it causes an error. The test output contains more detailed information, e.g. a stack trace.

Test Fails due to step binding problems

A test can fail if the test logic (bindings) have not yet been implemented (or are configured improperly). By default,
this is reported as an “inconclusive” result, although you can configure how Reqnroll behaves in this case.

Note: Some unit test frameworks do not support inconclusive result. In this case the problem is reported as an error
instead.

The test output can be very useful if you are missing bindings, as it contain a step binding method skeleton you can
copy to your project and extend with the test logic.

Ignored Tests

Just like with normal unit tests, you can also ignore Reqnroll tests. To do so, tag the feature or scenario with the
@ignore tag.

Danger: Don’t forget that ignoring a test will not solve any problems with your implementation. . .

1.6.6 Parallel Execution

Reqnroll scenarios are often automated as integration or system level tests. The system under test (SUT) might have
several external dependencies and a more complex internal architecture. The key design question when running the
tests in parallel is how the parallel test executions can be isolated from each other.

Test Isolation Levels

Determining the ideal level of isolation for your automated tests is a tradeoff. The higher the isolation of the parallel tests
the smaller the likelihood of conflicts on shared state and dependencies, but at the same time the higher the execution
time and amount of resources needed to maintain the isolated environments.

1.6. Execution Features 101



Reqnroll

Isolation
level

Description Runner support

Thread Test threads run as threads in the same process and application domain. Only the
thread-local state is isolated.

NUnit, MsTest,
xUnit

Process Test threads run in separate processes. VSTest per test as-
sembly

Agent Test threads run on multiple agents. E.g. VSTest task

Parallel Scheduling Unit

Depending on the test isolation level and the used test runner tools you can consider different “units of scheduling”
that can run in parallel with each other. When using Reqnroll we can consider the parallel scheduling on the level of
scenarios, features and test assemblies.

Schedul-
ing unit

Description Runner sup-
port

Scenario Scenarios can run in parallel with each other (also from different features) N/A
Feature Features can run in parallel with each other. Scenarios from the same feature are

running on the same test thread.
NUnit, MsTest,
xUnit

Test assem-
bly

Different test assemblies can run in parallel with each other e.g. VSTest

102 Chapter 1. How to use the documentation



Reqnroll

Running Reqnroll features in parallel with thread-level isolation

Properties

• Tests are running in multiple threads within the same process and the same application domain.

• Only the thread-local state is isolated.

• Smaller initialization footprint and lower memory requirements.

• The Reqnroll binding registry (step definitions, hooks, etc.) and some other core services are shared across test
threads.

Requirements

• You have to use a test runner that supports in-process parallel execution (currently NUnit v3, xUnit v2 and
MSTest)

• You have to ensure that your code does not conflict on static state.

• You must not use the static context properties of Reqnroll ScenarioContext.Current, FeatureContext.
Current or ScenarioStepContext.Current (see further information below).

• You have to configure the test runner to execute the Reqnroll features in parallel with each other (see configuration
details below).

1.6. Execution Features 103



Reqnroll

Execution Behavior

• [BeforeTestRun] and [AfterTestRun] hooks (events) are executed only once on the first thread that initial-
izes the framework. Executing tests in the other threads is blocked until the hooks have been fully executed on
the first thread.

• All scenarios in a feature must be executed on the same thread. See the configuration of the test runners below.
This ensures that the [BeforeFeature] and [AfterFeature] hooks are executed only once for each feature
and that the thread has a separate (and isolated) FeatureContext.

• Scenarios and their related hooks (Before/After scenario, scenario block, step) are isolated in the different threads
during execution and do not block each other. Each thread has a separate (and isolated) ScenarioContext.

• The test trace listener (that outputs the scenario execution trace to the console by default) is invoked asyn-
chronously from the multiple threads and the trace messages are queued and passed to the listener in serialized
form. If the test trace listener implements Reqnroll.Tracing.IThreadSafeTraceListener, the messages
are sent directly from the threads.

NUnit Configuration

By default, NUnit does not run the tests in parallel. Parallelization must be configured by setting an assembly-level
attribute in the Reqnroll project.

Listing 154: C# File

using NUnit.Framework;
[assembly: Parallelizable(ParallelScope.Fixtures)]

Note: Reqnroll does not support scenario level parallelization with NUnit (when scenarios from the same feature
execute in parallel). If you configure a higher level NUnit parallelization than “Fixtures” your tests will fail with
runtime errors.

MSTest Configuration

By default, MsTest does not run the tests in parallel. Parallelisation must be configured by setting an assembly-level
attribute in the Reqnroll project.

Listing 155: C# File

using Microsoft.VisualStudio.TestTools.UnitTesting;
[assembly: Parallelize(Scope = ExecutionScope.ClassLevel)]

Note: Reqnroll does not support scenario level parallelization with MsTest (when scenarios from the same feature
execute in parallel). If you configure a higher level MsTest parallelization than “ClassLevel” your tests will fail with
runtime errors.

104 Chapter 1. How to use the documentation

https://docs.nunit.org/articles/nunit/writing-tests/attributes/parallelizable.html
https://devblogs.microsoft.com/devops/mstest-v2-in-assembly-parallel-test-execution/


Reqnroll

xUnit Configuration

By default xUnit runs all Reqnroll features in parallel with each other. No additional configuration is necessary.

Thread-safe ScenarioContext, FeatureContext and ScenarioStepContext

When using parallel execution accessing the obsolete ScenarioContext.Current, FeatureContext.Current or
ScenarioStepContext.Current static properties is not allowed. Accessing these static properties during parallel
execution throws a ReqnrollException.

To access the context classes in a thread-safe way you can either use context injection or the instance properties of the
Steps base class. For further details please see the FeatureContext and ScenarioContext documentation.

Excluding Reqnroll features from parallel execution

To exclude specific features from running in parallel with any other features, see the
addNonParallelizableMarkerForTags configuration option.

Please note that xUnit requires additional configuration to ensure that non parallelizable features do not run in parallel
with any other feature. This configuration is automatically provided for users via the xUnit plugin (so no additional
effort is required). The following class will be defined within your test assembly for you:

Listing 156: C# File

[CollectionDefinition("ReqnrollNonParallelizableFeatures", DisableParallelization =␣
→˓true)]
public class ReqnrollNonParallelizableFeaturesCollectionDefinition
{
}

Running Reqnroll scenarios in parallel with process isolation

If there are no external dependencies or they can be cloned for parallel execution, but the application architecture
depends on static state (e.g. static caches etc.), the best way is to execute tests in parallel isolated by process. This
ensures that every test execution thread is hosted in a separate process and hence static state is not accessed in parallel.

Properties

• Tests threads are separated by a process boundary.

• Also the static memory state is isolated. Conflicts might be expected on external dependencies only.

• Bigger initialization footprint and higher memory requirements.

1.6. Execution Features 105

https://xunit.net/docs/running-tests-in-parallel


Reqnroll

Requirements

• You have to use VSTest task.

Execution Behavior

• [BeforeTestRun] and [AfterTestRun] hooks are executed for each individual test execution thread, so you
can use them to initialize/reset shared memory.

• Each test thread manages its own enter/exit feature execution workflow. The [BeforeFeature] and
[AfterFeature] hooks may be executed multiple times in different test threads if they run scenarios from the
same feature file. The execution of these hooks do not block one another, but the Before/After feature hooks are
called in pairs within a single thread (the [BeforeFeature] hook of the next scenario is only executed after the
[AfterFeature] hook of the previous one). Each test thread has a separate (and isolated) FeatureContext.

1.6.7 Debugging

Reqnroll Visual Studio integration also supports debugging the execution of your tests. Just like in the source code files
of your project, you can place breakpoints in the Reqnroll feature files. Whenever you execute the generated tests in
debug mode, the execution will stop at the specified breakpoints and you can execute the steps one-by-one using “Step
Over” (F10), or follow the detailed execution of the bindings using “Step Into” (F11).

If the execution of a Reqnroll test is stopped at a certain point of the binding (e.g. because of an exception), you can
navigate to the current step in the feature file from the “Call Stack” tool window in Visual Studio.

By default, you cannot debug inside the generated .feature.cs files. You can enable debugging for these files by setting
allowDebugGeneratedFiles setting in generator section to true.

1.6.8 Output API

The Reqnroll Output API allows you to display texts and attachments in your IDE’s test explorer output window and
also in the test result logs.

To use the Reqnroll output API interface you must inject the IReqnrollOutputHelper interface via Context Injection:

106 Chapter 1. How to use the documentation



Reqnroll

Listing 157: Step Definition File

private readonly IReqnrollOutputHelper _reqnrollOutputHelper;

public CalculatorStepDefinitions(IReqnrollOutputHelper outputHelper)
{

_outputHelper = outputHelper;
}

There are two methods available:

WriteLine(string text)

This method adds text:

_reqnrollOutputHelper.WriteLine("TEXT");

AddAttachment(string filePath)

This method adds an attachment and requires the file path:

_reqnrollOutputHelper.AddAttachment("filePath");

Note: The attachment file can be stored anywhere. But it is important to keep mind that if a local file is added, it will
only work on your machine and not accessible when shared with others.

Note: Handling of attachments depends on your runner. MStest and NUnit currently support this feature but xUnit do
not.

1.6.9 Color Test Result Output

Configuration

To enable the colorization of the test result output, you can turn the trace.coloredOutput to true in the configuration

The color will only be visible in supported place, like in Rider test runner or in the console when running test using
dotnet test.

You can turn off the color by setting NO_COLOR=1 environment variable. This can be useful when you run the tests on
a build server that does not support colors.

1.6. Execution Features 107



Reqnroll

Customization

You can customize the colors by configuring a Hook and injecting IColorOutputTheme like in the following example.

Listing 158: Hook File

[Binding]
public class Hooks
{

[BeforeTestRun]
public static void ConfigureColor(IColorOutputTheme colorOutputTheme)
{

colorOutputTheme.Keyword = AnsiColor.Reset;
colorOutputTheme.Error = AnsiColor.Composite(AnsiColor.Bold, AnsiColor.

→˓Foreground(TerminalRgbColor.FromHex("FF8EF3")));
colorOutputTheme.Done = AnsiColor.Foreground(TerminalRgbColor.FromHex("3A86FF"));

}
}

1.7 Extend Reqnroll

This part contains details of the following topics.

1.7.1 Value Retrievers

Reqnroll can turn properties in a table like this:

Given I have the following people
| First Name | Last Name | Age | IsAdmin |
| John | Guppy | 40 | true |

Into an object like this:

public class Person
{

public string FirstName { get; set; }
public string LastName { get; set; }
public int Age { get; set; }
public bool IsAdmin { get; set; }

}

With commands like these:

[Given(@"I have the following people")]
public void x(DataTable table)
{

var person = table.CreateInstance<Person>();
// OR
var people = table.CreateSet<Person>();

}

108 Chapter 1. How to use the documentation



Reqnroll

But how does Reqnroll match the values in the table with the values in the object? It does so with Value Retrievers.
There are value retrievers defined for almost every C# base type, so mapping most basic POCOs can be done with
Reqnroll without any modification.

Extending with your own value retrievers

Often you might have a more complicated POCO type, one that is not comprised solely of C# base types. Like this
one:

public class Shirt
{

public Guid Id { get; set; }
public string Name { get; set; }
public Color Color { get; set; }

}

public class Color
{

public string Name { get; set; }
}

Simple example how to process the human readable color ‘red’ to the Hex value:

| First Name | ShirtColor |
| Scott | Red |

The table will be processed, and the following code can be used to capture the table translation and customize it:

public class ShirtColorValueRetriever : IValueRetriever
{

public bool CanRetrieve(KeyValuePair<string, string> keyValuePair, Type␣
→˓targetType, Type propertyType)

{
if (!keyValuePair.Key.Equals("ShirtColor"))
{

return false;
}

bool value;
if (Color.TryParse(keyValuePair.Value, out value))
{

return true;
}

}

public object Retrieve(KeyValuePair<string, string> keyValuePair, Type␣
→˓targetType, Type propertyType)

{
return Color.Parse(keyValuePair.Value).HexCode;

}
}

1.7. Extend Reqnroll 109



Reqnroll

Registering Custom ValueRetrievers

Before you can utilize a custom ValueRetriever, you’ll need to register it. We recommend doing this prior to a test
run using the [BeforeTestRun] attribute and Service.Instance.ValueRetrievers.Register(). For example:

[Binding]
public static class Hooks
{

[BeforeTestRun]
public static void BeforeTestRun()
{

Service.Instance.ValueRetrievers.Register(new MyCustomValueRetriever());
}

}

1.7.2 Plugins

Reqnroll supports the following types of plugins:

• Runtime

• Generator

All types of plugins are created in a similar way.

Runtime plugins

Runtime plugins need to target .NET Framework 4.6.2 and .NET Standard 2.0. Reqnroll searches for files that end with
.ReqnrollPlugin.dll in the following locations:

• The folder containing your Reqnroll.dll file

• Your working directory

Reqnroll loads plugins in the order they are found in the folder.

Create a runtime plugin

You can create your RuntimePlugin in a separate project, or in the same project where your tests are.

Optional:

1. Create a new class library for your plugin.

Mandatory:

1. Add the Reqnroll NuGet package to your project.

2. Define a class that implements the IRuntimePlugin interface (defined in Reqnroll.Plugins).

3. Flag your assembly with the RuntimePlugin attribute for the plugin to be identified by Reqnroll plugin loader.
The following example demonstrates a MyNewPlugin class that implements the IRuntimePlugin interface:
[assembly: RuntimePlugin(typeof(MyNewPlugin))]

4. Implement the Initialize method of the IRuntimePlugin interface to access the RuntimePluginEvents
and RuntimePluginParameters.

110 Chapter 1. How to use the documentation



Reqnroll

RuntimePluginsEvents

• RegisterGlobalDependencies - registers a new interface in the global container, see Available Containers &
Registrations

• CustomizeGlobalDependencies - overrides registrations in the global container, see Available Containers &
Registrations

• ConfigurationDefaults - adjust configuration values

• CustomizeTestThreadDependencies - overrides or registers a new interface in the test thread container, see
Available Containers & Registrations

• CustomizeFeatureDependencies - overrides or registers a new interface in the feature container, see Available
Containers & Registrations

• CustomizeScenarioDependencies - overrides or registers a new interface in the scenario container, see Avail-
able Containers & Registrations

Generator plugins

Generator plugins need to target .NET Framework 4.7.1 and .NET Core 3.1. The MSBuild task needs to know which
generator plugins it should use. You therefore have to add your generator plugin to the ReqnrollGeneratorPlugins
ItemGroup. This is passed to the MSBuild task as a parameter and later used to load the plugins.

Create a generator plugin

1. Create a new class library for your plugin.

2. Add the Reqnroll.CustomPlugin NuGet package to your project.

3. Define a class that implements the IGeneratorPlugin interface (defined in Reqnroll.Generator.Plugins names-
pace).

4. Flag your assembly with the GeneratorPlugin attribute for the plugin to be identified by Reqnroll plugin loader.
The following example demonstrates a MyNewPlugin class that implements the IGeneratorPlugin interface:
[assembly: GeneratorPlugin(typeof(MyNewPlugin))]

5. Implement the Initialize method of the IGeneratorPlugin interface to access GeneratorPluginEvents
and GeneratorPluginParameters parameters.

GeneratorPluginsEvents

• RegisterDependencies - registers a new interface in the Generator container

• CustomizeDependencies - overrides registrations in the Generator container

• ConfigurationDefaults - adjust configuration values

1.7. Extend Reqnroll 111



Reqnroll

Combined Package with both plugins

If you need to update generator and runtime plugins with a single NuGet package (as we are doing with the Reqnroll.
xUnit, Reqnroll.NUnit and Reqnroll.xUnit packages), you can do so.

As with the separate plugins, you need two projects. One for the runtime plugin, and one for the generator plugin. As
you only want one NuGet package, the NuSpec files must only be present in the generator project. This is because
the generator plugin is built with a higher .NET Framework version (.NET 4.7.1), meaning you can add a dependency
on the Runtime plugin (which is only .NET 4.6.1). This will not working the other way around.

You can simply combine the contents of the .targets and .props file to a single one.

Tips & Tricks

Building Plugins on non-Windows machines

For building .NET 4.6.2 projects on non- Windows machines, the .NET Framework reference assemblies are needed.

You can add them with following PackageReference to your project:

<ItemGroup>
<PackageReference Include="Microsoft.NETFramework.ReferenceAssemblies" Version="1.0.0

→˓">
<PrivateAssets>all</PrivateAssets>
<IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>

</PackageReference>
</ItemGroup>

1.7.3 Decorators

Reqnroll supports decorators which can be used in feature files. Decorators can be used to convert a tag in a feature
file to an attribute in the generated code behind file.

Example decorator

Say we want to add an NUnit Apartment attribute to a test method in the generated code behind file (a file with
extension .feature.cs) to specify that the test should be running in a particular apartment, either the STA or the
MTA. For this, we can use a decorator which we need to register in a generator plugin so that the decorator can have
its effect during the code behind file generation.

Steps to follow:

1. Create a Reqnroll project with test framework NUnit using the project template provided by the Reqnroll Visual
Studio extension.

2. Create a GeneratorPlugin. You can follow the steps from the Plugins guide.

3. Create a Decorator (which is a class which implements interfaces like ITestMethodTagDecorator,
ITestMethodDecorator, etc.):

• ITestMethodDecorator is called always

• ITestMethodTagDecorator is called only if the scenario has at least one tag

112 Chapter 1. How to use the documentation



Reqnroll

public class MyMethodTagDecorator : ITestMethodTagDecorator
{

public static readonly string TAG_NAME = "myMethodTagDecorator";
private readonly ITagFilterMatcher _tagFilterMatcher;

public MyMethodTagDecorator(ITagFilterMatcher tagFilterMatcher)
{

_tagFilterMatcher = tagFilterMatcher;
}

public bool CanDecorateFrom(string tagName, TestClassGenerationContext␣
→˓generationContext, CodeMemberMethod testMethod)

{
return _tagFilterMatcher.Match(TAG_NAME, tagName);

}

public void DecorateFrom(string tagName, TestClassGenerationContext␣
→˓generationContext, CodeMemberMethod testMethod)

{
var attribute = new CodeAttributeDeclaration(

"NUnit.Framework.ApartmentAttribute",
new CodeAttributeArgument(

new CodeFieldReferenceExpression(
new CodeTypeReferenceExpression(typeof(System.Threading.

→˓ApartmentState)),
"STA")));

testMethod.CustomAttributes.Add(attribute);
}

public int Priority { get; }
public bool RemoveProcessedTags { get; }
public bool ApplyOtherDecoratorsForProcessedTags { get; }

}

4. Register the Decorator in the Initialize method of the GeneratorPlugin:

public void Initialize(GeneratorPluginEvents generatorPluginEvents,␣
→˓GeneratorPluginParameters generatorPluginParameters,
UnitTestProviderConfiguration unitTestProviderConfiguration)
{

// Register the decorator
generatorPluginEvents.RegisterDependencies += RegisterDependencies;

}

private void RegisterDependencies(object sender, RegisterDependenciesEventArgs␣
→˓eventArgs)
{

eventArgs.ObjectContainer.RegisterTypeAs<MyMethodTagDecorator,␣
→˓ITestMethodTagDecorator>(MyMethodTagDecorator.TAG_NAME);
}

5. Install the GeneratorPlugin NuGet package to the Reqnroll project.

1.7. Extend Reqnroll 113



Reqnroll

6. Add tag @myMethodTagDecorator to the feature file:

7. Build the solution

8. Check the generated code behind file (.feature.cs) if it contains the NUnit Apartment attribute:

Further read

• NUnit Apartment attribute: https://docs.nunit.org/articles/nunit/writing-tests/attributes/apartment.html

• Apartments: https://docs.microsoft.com/en-us/windows/win32/com/processes–threads–and-apartments

1.7.4 Available Containers

Global Container

The global container captures global services for test execution and the step definition, hook and transformation dis-
covery result (i.e. what step definitions you have).

• IRuntimeConfigurationProvider

• ITestRunnerManager

• IStepFormatter

• ITestTracer

• ITraceListener

• ITraceListenerQueue

• IErrorProvider

114 Chapter 1. How to use the documentation

https://docs.nunit.org/articles/nunit/writing-tests/attributes/apartment.html
https://docs.microsoft.com/en-us/windows/win32/com/processes--threads--and-apartments


Reqnroll

• IRuntimeBindingSourceProcessor

• IRuntimeBindingRegistryBuilder

• IBindingRegistry

• IBindingFactory

• IStepDefinitionRegexCalculator

• IBindingInvoker

• IStepDefinitionSkeletonProvider

• ISkeletonTemplateProvider

• IStepTextAnalyzer

• IRuntimePluginLoader

• IBindingAssemblyLoader

• IBindingInstanceResolver

• RuntimePlugins

– RegisterGlobalDependencies- Event

– CustomizeGlobalDependencies- Event

Test Thread Container

Note: Parent Container is the Global Container

The test thread container captures the services and state for executing scenarios on a particular test thread. For parallel
test execution, multiple test runner containers are created, one for each thread.

• ITestRunner

• IContextManager

• ITestExecutionEngine

• IStepArgumentTypeConverter

• IStepDefinitionMatchService

• ITraceListener

• ITestTracer

• RuntimePlugins

– CustomizeTestThreadDependencies- Event

1.7. Extend Reqnroll 115



Reqnroll

Feature Container

Note: Parent Container is the Test Thread Container

The feature container captures a feature’s execution state. It is disposed after the feature is executed.

• FeatureContext (also available from the test thread container through IContextManager)

• RuntimePlugins

– CustomizeFeatureDependencies- Event

Scenario Container

Note: Parent Container is the Feature Container

The scenario container captures the state of a scenario execution. It is disposed after the scenario is executed.

• (step definition classes)

• (dependencies of the step definition classes, aka context injection)

• ScenarioContext (also available from the Test Thread Container through IContextManager)

• RuntimePlugins

– CustomizeScenarioDependencies- Event

1.8 Integrations

This part contains details of the following topics.

1.8.1 Available Plugins

Plugins for DI Container

Name Description Down-
load

Reqn-
roll.Autofac

Reqnroll plugin for using Autofac as a dependency injection framework for step defini-
tions. Read more. . .

Reqn-
roll.Windsor

Reqnroll plugin for using Castle Windsor as a dependency injection framework for step
definitions. Read more. . .

116 Chapter 1. How to use the documentation

https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll


Reqnroll

Other Plugins

Name Description Download
Reqnroll.External Data Package to use external data in Gherkin scenarios. Read more. . .

1.8.2 Autofac

Introduction

Reqnroll plugin for using Autofac as a dependency injection framework for step definitions.

Note: Currently supports Autofac v4.0.0 or above

Step by step walkthrough of using Reqnroll.Autofac

1. Install plugin from NuGet into your Reqnroll project.

PM> Install-Package Reqnroll.Autofac

2. Create static methods somewhere in the Reqnroll project

Plugin supports both registration of dependencies globally and per scenario:

2.1 Optionally configure dependencies that need to be shared globally for all scenarios:

Create a static method somewhere in the Reqnroll project to register scenario dependencies: (Recommended to put
it into the Support folder) that returns void and has one parameter of Autofac ContainerBuilder, tag it with the
[GlobalDependencies] attribute.

When registering global dependencies, it is also a requirement to configure scenario dependencies as well in order to
register classes marked with the [Binding] attribute as shown below.

Globally registered dependencies may be resolved in the [BeforeTestRun] and [AfterTestRun] methods.

2.2 Configure dependencies to be resolved each time for a scenario:

Create a static method somewhere in the Reqnroll project to register scenario dependencies: (Recommended to put
it into the Support folder) that returns void and has one parameter of Autofac ContainerBuilder, tag it with the
[ScenarioDependencies] attribute.

1.8. Integrations 117

https://www.nuget.org/packages/Reqnroll.ExternalData/
https://go.reqnroll.net/doc-externaldata


Reqnroll

2.3 Configure your dependencies for the scenario execution within either the two methods
[GlobalDependencies] and [ScenarioDependencies] or the single [ScenarioDependencies] method.

2.4 You also have to register the step definition classes in the [ScenarioDependencies]method, that
you can do by either registering all public types from the Reqnroll project:

builder.RegisterAssemblyTypes(typeof(YourClassInTheReqnrollProject).Assembly).
→˓SingleInstance();

2.5 or by registering all classes marked with the [Binding] attribute:

You may use a provided extension method to do this, but importing:

using Reqnroll.Autofac.ReqnrollPlugin;

Then

containerBuilder.AddReqnrollBindings(typeof(YourClassInTheReqnrollProject))

Or overload

containerBuilder.AddReqnrollBindings<YourClassInTheReqnrollProject>()

Or manually register like so:

builder
.RegisterAssemblyTypes(typeof(TestDependencies).Assembly)
.Where(t => Attribute.IsDefined(t, typeof(BindingAttribute)))
.SingleInstance();

3. A typical dependency builder method for [GlobalDependencies] with [ScenarioDependencies]
probably looks like this:

[GlobalDependencies]
public static void CreateGlobalContainer(ContainerBuilder containerBuilder)
{

// Register globally scoped runtime dependencies
Dependencies.RegisterGlobalDependencies(containerBuilder);

//TODO: add Services that are shared globally.
}

[ScenarioDependencies]
public static void CreateContainerBuilder(ContainerBuilder containerBuilder)
{
// Register scenario scoped runtime dependencies
Dependencies.RegisterScenarioDependencies(containerBuilder);

//TODO: add customizations, stubs required for testing

(continues on next page)

118 Chapter 1. How to use the documentation



Reqnroll

(continued from previous page)

containerBuilder.AddReqnrollBindings<TestDependencies>()
}

4. It is also possible to continue to use the legacy method as well, however this method is not
compatible with global dependency registration and can only be used on it’s own like so:

Create a static method somewhere in the Reqnroll project to register scenario dependencies: (Recommended to put it
into the Support folder) that returns an Autofac ContainerBuilder and tag it with the [ScenarioDependencies]
attribute.

5. If you have an existing container, built and owned by your application under test, you can use that
instead of letting Reqnroll manage your container

Create a static method in your Reqnroll project to return a lifetime scope from your container. Note that Reqnroll creates
a second scope under yours, so be sure to pair this use-case with the CreateContainerBuilder method above to add
your step bindings.

[FeatureDependencies]
public static ILifetimeScope GetFeatureLifetimeScope()
{

// TODO: Add any top-level dependencies here, though note that usually step bindings
// should be declared in the Configure method below, as this will ensure␣

→˓they
// are in the correct scope to inject ScenarioContext etc.

return containerScope.BeginLifetimeScope();
}

[ScenarioDependencies]
public static void ConfigureContainerBuilder(ContainerBuilder containerBuilder)
{

//TODO: add customizations, stubs required for testing

containerBuilder.AddReqnrollBindings<TestDependencies>();
}

1.8.3 F# Support

Bindings for Reqnroll can be written also in F#. Doing so you can take the advantages of the F# language for writing step
definitions: you can define regex-named F# functions for your steps. Simply put the regex between double backticks.

let [<Given>] ``I have entered (.*) into the calculator``(number:int) =
Calculator.Push(number)

Although the regex method names are only important for step definitions you can also define hooks and step argument
conversions in the F# binding projects.

Note: You need to create a C# or VB project for hosting the feature files and configure your F# project(s) as external
binding assemblies:

1.8. Integrations 119



Reqnroll

Listing 159: reqnroll.json

{
"$schema": "https://schemas.reqnroll.net/reqnroll-config-latest.json",

"bindingAssemblies": [
{
"assembly": "MyFSharpBindings"

}
]

}

1.8.4 Castle Windsor

Introduction

Reqnroll plugin for using Castle Windsor as a dependency injection framework for step definitions.

Note: Currently supports Castle Windsor v5.0.1 or above

Step by step walkthrough of using Reqnroll.Windsor

1. Install plugin

- Install plugin from NuGet into your Reqnroll project.

PM> Install-Package Reqnroll.Windsor

2. Create static method

- Create a static method somewhere in the Reqnroll project

(Recommended to put it into the Support folder) that returns a Windsor IWindsorContainer and tag it with the
[ScenarioDependencies] attribute.

- Configure your dependencies for the scenario execution within the method.

- All your binding classes are automatically registered, including ScenarioContext etc.

3. Sample dependency builder method

- A typical dependency builder method probably looks like this:

[ScenarioDependencies]
public static IWindsorContainer CreateContainer()
{
var container = new WindsorContainer();

(continues on next page)

120 Chapter 1. How to use the documentation



Reqnroll

(continued from previous page)

//TODO: add customizations, stubs required for testing

return container;
}

4. Reusing a container

- To re-use a container between scenarios, try the following:

Your shared services will be resolved from the root container, while scoped objects such as ScenarioContext will be
resolved from the new container.

[ScenarioDependencies]
public static IWindsorContainer CreateContainer()
{
var container = new WindsorContainer();
container.Parent = sharedRootContainer;

return container;
}

5. Customize binding behavior

- To customize binding behavior, use the following:

Default behavior is to auto-register bindings. To manually register these during CreateContainer you can use the
following attribute:

[ScenarioDependencies(AutoRegisterBindings = false)]
public static IWindsorContainer CreateContainer()
{

// Register your bindings here
}

1.8.5 External Data Plugin

You can easily apply standardized test cases across a wide range of features to significantly reduce redundant data for
large test suites. By reusing execution flows, you can also speed up exploratory and approval testing for ranges of
examples. Reqnroll makes all of this possible by introducing support for loading external data into scenarios easily.

The Reqnroll ExternalData plugin lets teams separate test data from test scenarios, and reuse examples across a large set
of scenarios. This is particularly helpful when a common set of examples needs to be consistently verified in different
scenarios.

Simply download the NuGet package and add it to your reqnroll projects to use it.

1.8. Integrations 121

https://www.nuget.org/packages/Reqnroll.ExternalData/
https://www.nuget.org/packages/Reqnroll.ExternalData/


Reqnroll

Supported Data Sources

• CSV files (format ‘CSV’, extension .csv)

Note: Standard RFC 4180 CSV format is supported with a header line (plugin uses CsvHelper to parse the files).

• Excel files (format Excel, extensions .xlsx, .xls, .xlsb)

Note: Both XLSX and XLS is supported (plugin uses ExcelDataReader to parse the files).

• JSON files (format ‘JSON’, extension .json)

Note: Object arrays and nested object arrays are supported (plugin uses JObject.Parse to parse the files).

Tags

The following tags can be used to specify the external source:

• @DataSource:path-to-file - This tag is the main tag that you can add to a scenario or a scenario outline to
specify the data source you wish to use.

Caution: The path is a relative path to the folder of the feature files.

• @DisableDataSource - The @DataSource tag can be added to the feature node, turning all scenarios in the
file to scenario outlines. This method is useful when the entire feature file uses the same data source. Use the
@DisableDataSource If you want a select few scenarios in the feature file to not use the data source tagged at
feature node level.

• @DataFormat:format - This tag only needs to be used if the format cannot be identified from the file extension.

• @DataSet:data-set-name - This tag is applicable to Excel and Json files only. For Excel it is used to select
the worksheet of the Excel file you wish to use. By default, the first worksheet in an Excel file is targeted. For
Json it is used to select the object array you wish to use. By default, the first object array in a Json file is targeted.

• @DataField:name-in-feature-file=name-in-source-file - This tag can be used to “rename” columns
of the external data source.

General notes on tags:

• Tags can be added on feature, scenario, scenario outline or scenario outline examples.

• Tags can inherit from the feature node, but you can override them with another tag or disable them by using the
@DisableDataSource tag on the scenario level.

• As tags cannot contain spaces, generally the underscore (_) character can be used to represent a space. It is
currently not supported to access a file that contains spaces in the file name or in the relative path.

122 Chapter 1. How to use the documentation

https://github.com/JoshClose/CsvHelper
https://github.com/ExcelDataReader/ExcelDataReader
https://github.com/JamesNK/Newtonsoft.Json/blob/master/Src/Newtonsoft.Json/Linq/JObject.cs


Reqnroll

Examples

CSV files

The below examples all use the same products.csv file. The file contains three products and their corresponding prices:

• This scenario will be treated as a scenario outline with the products from the CSV file replacing the <product>
parameter in the given statement:

@DataSource:products.csv
Scenario: Valid product prices are calculated

Given the customer has put 1 piece of <product> in the basket
When the basket price is calculated
Then the basket price should be greater than zero

• This scenario will be treated as a scenario outline similar to the above example but uses both <product> and
<price> from the CSV file:

@DataSource:products.csv
Scenario: The basket price is calculated correctly

Given the price of <product> is €<price>
And the customer has put 1 pcs of <product> to the basket
When the basket price is calculated
Then the basket price should be €<price>

• This scenario shows how you can extend the product list using the example table with the ones from the CSV
file. A total of 4 products will be added here, 3 from the CSV file plus “Cheesecake” from the example table:

@DataSource:products.csv
Scenario Outline: Valid product prices are calculated (Outline)

Given the customer has put 1 pcs of <product> to the basket
When the basket price is calculated
Then the basket price should be greater than zero

Examples:
| product |
| Cheesecake |

You may also add the @DataSource above the example table if you wish to:

Scenario Outline: Valid product prices are calculated (Outline, example annotation)
Given the customer has put 1 pcs of <product> to the basket
When the basket price is calculated
Then the basket price should be greater than zero

@DataSource:products.csv
Examples:

| product |
| Cheesecake |

1.8. Integrations 123



Reqnroll

• In this scenario the parameters names do not match the column names in the CSV file but we can address that
by using the @DataField:product-name=product and @DataField:price-in-EUR=price tags:

@DataSource:products.csv @DataField:product-name=product @DataField:price-in-EUR=price
Scenario: The basket price is calculated correctly (renamed fields)

Given the price of <product-name> is €<price-in-EUR>
And the customer has put 1 piece of <product-name> in the basket
When the basket price is calculated
Then the basket price should be €<price-in-EUR>

• This scenario is similar to the above scenario with the renaming of the parameters, but the difference is the use
of space in the parameter name. Spaces are not supported and must be replaced with underscore (_):

@DataSource:products.csv @DataField:product_name=product @DataField:price-in-EUR=price
Scenario: The basket price is calculated correctly

Given the customer has put 1 piece of <product name> in the basket
When the basket price is calculated
Then the basket price should be greater than zero

Examples:
| product name |
| Cheesecake |

Excel files

You can use Excel files the same way as you do with CSV files with some minor differences:

• Only simple worksheets are supported, where the header is in the first row and the data comes right below that.
Excel files that contain tables, graphics, etc. are not supported.

• Excel files with multiple worksheets are supported, you can use the @DataSet:sheet-name to select the work-
sheets you wish to target. The plugin uses the first worksheet by default.

• Use underscores in the @DataSet tag instead of spaces if the worksheet name contains spaces.

The below example shows an Excel file with multiple worksheets and we wish to target the last worksheet labelled
“other products”. We do this by using the @DataSet:other_products tag. Note the use of (_) instead of space:

124 Chapter 1. How to use the documentation



Reqnroll

@DataSource:products.xlsx @DataSet:other_products
Scenario: The basket price is calculated correctly for other products

Given the price of <product> is €<price>
And the customer has put 1 piece of <product> in the basket
When the basket price is calculated
Then the basket price should be €<price>

Language Settings

The decimal and date values read from an Excel file will be exported using the language of the feature file (specified
using the #language setting in the feature file or in the Reqnroll configuration file). This setting affects for example
the decimal operator as in some countries comma (,) is used as decimal separator instead of dot (.). To specify not
only the language but also the country use the #language: language-country tag, e.g. #language: de-AT for
Deutsch-Austria.

Example: Hungarian uses comma (,) as decimal separator instead of dot (.), so Reqnroll will expect the prices in format
1,23:

This sample shows that the language settings are applied for the data that is being read by the external data plugin.

#language: hu-HU
Jellemző: External Data from Excel file (Hungarian)

@DataSource:products.xlsx
Forgatókönyv: The basket price is calculated correctly

Amennyiben the price of <product> is €<price>
És the customer has put 1 pcs of <product> to the basket
Amikor the basket price is calculated
Akkor the basket price should be €<price>

Json files

You can use Json files the same way as you do with Excel files with some minor differences:

• Only Object arrays and nested Object are supported. Arrays of simple types, empty arrays, etc. are not supported.

• Json files with multiple object arrays are supported, you can use the @DataSet:array-property-name to
select the object array you wish to target. The plugin uses the first object array by default. Nested object arrays
can be specified by appending property names using a ‘.’.

• Use underscores in the @DataSet tag instead of spaces if the array property name name contains spaces.

The below example shows a Json file with object arrays and we wish to target the last array labelled “other products”.
We do this by using the @DataSet:other_products tag. Note the use of (_) instead of space:

1.8. Integrations 125



Reqnroll

@DataSource:products.json @DataSet:other_products
Scenario: The basket price is calculated correctly for other products

Given the price of <product> is €<price>
And the customer has put 1 pcs of <product> to the basket
When the basket price is calculated
Then the basket price should be €<price>

The below example shows a Json file with nested object arrays and we wish to target the inner array labelled “varieties”.
We do this by using the @DataSet:products.varieties tag. Note the use of . to append nested property names:

@DataSource:products-nested-dataset.json @DataSet:products.varieties
Scenario: The basket price is calculated correctly for products.varieties in nested␣
→˓products json

Given the price of <product> is €<price>
And the customer has put 1 pcs of <product> to the basket
When the basket price is calculated

(continues on next page)

126 Chapter 1. How to use the documentation



Reqnroll

(continued from previous page)

Then the basket price should be €<price>

1.8.6 MSTest

Reqnroll supports MsTest V2.

Documentation for MSTest can be found here.

Needed NuGet Packages

For Reqnroll: Reqnroll.MSTest

For MSTest: MSTest.TestFramework

For Test Discovery & Execution:

• MSTest.TestAdapter

• Microsoft.NET.Test.Sdk

Accessing TestContext

You can access the MsTest TestContext instance in your step definition or hook classes by constructor injection:

using Microsoft.VisualStudio.TestTools.UnitTesting;

[Binding]
public class MyStepDefs
{

private readonly TestContext _testContext;
public MyStepDefs(TestContext testContext) // use it as ctor parameter
{

_testContext = testContext;
}

[Given("a step")]
public void GivenAStep()
{

//you can access the TestContext injected in the ctor
_testContext.WriteLine(_testContext.TestRunDirectory);

}

[BeforeScenario()]
public void BeforeScenario()
{

//you can access the TestContext injected in the ctor
_testContext.WriteLine(_testContext.TestRunDirectory);

}
}

In the static BeforeTestRun/AfterTestRun hooks you can use parameter injection:

1.8. Integrations 127

https://docs.microsoft.com/en-us/visualstudio/test/unit-test-your-code?view=vs-2019
https://www.nuget.org/packages/Reqnroll.MSTest/
https://www.nuget.org/packages/MSTest.TestFramework/
https://www.nuget.org/packages/MSTest.TestAdapter/
https://www.nuget.org/packages/Microsoft.NET.Test.Sdk


Reqnroll

using Microsoft.VisualStudio.TestTools.UnitTesting;

[Binding]
public class Hooks
{

[BeforeTestRun]
public static void BeforeTestRun(TestContext testContext)
{

//you can access the TestContext injected as parameter
testContext.WriteLine(testContext.TestRunDirectory);

}

[AfterTestRun]
public static void AfterTestRun(TestContext testContext)
{

//you can access the TestContext injected as parameter
testContext.WriteLine(testContext.DeploymentDirectory);

}
}

Tags for TestClass Attributes

The MsTest Generator can generate test class attributes from tags specified on a feature.

Owner

Tag:

@Owner:John

Output:

[Microsoft.VisualStudio.TestTools.UnitTesting.OwnerAttribute("John")]

Priority

Tag:

@Priority:1

Output:

[Microsoft.VisualStudio.TestTools.UnitTesting.PriorityAttribute(1)]

Remarks:

The attribute is generated only when the value is a valid integer (valid means supported by int.TryParse)

128 Chapter 1. How to use the documentation

https://learn.microsoft.com/it-it/dotnet/api/system.int32.tryparse?#system-int32-tryparse(system-string-system-int32@)


Reqnroll

WorkItem

Tag:

@WorkItem:123

Output:

[Microsoft.VisualStudio.TestTools.UnitTesting.WorkItemAttribute(123)]

DeploymentItem

Example 1 : Copy a file to the same directory as the deployed test assemblies

Tag:

@MsTest:DeploymentItem:test.txt

Output:

[Microsoft.VisualStudio.TestTools.UnitTesting.DeploymentItemAttribute("test.txt")]

Example 2 : Copy a file to a sub-directory relative to the deployment directory

Tag:

@MsTest:DeploymentItem:Resources\DeploymentItemTestFile.txt:Data

Output:

[Microsoft.VisualStudio.TestTools.UnitTesting.DeploymentItemAttribute("Resources\\
→˓DeploymentItemTestFile.txt", "Data")]

1.8.7 NUnit

Reqnroll supports NUnit 3.13.1 or later.

Documentation for NUnit can be found here.

Needed NuGet Packages

For Reqnroll: Reqnroll.NUnit

For NUnit: NUnit

For Test Discovery & Execution:

• NUnit3TestAdapter

• Microsoft.NET.Test.Sdk

1.8. Integrations 129

https://github.com/nunit/docs/wiki/NUnit-Documentation
https://www.nuget.org/packages/Reqnroll.NUnit/
https://www.nuget.org/packages/NUnit/
https://www.nuget.org/packages/NUnit3TestAdapter/
https://www.nuget.org/packages/Microsoft.NET.Test.Sdk


Reqnroll

1.8.8 xUnit

Reqnroll supports xUnit 2.4 or later.

Documentation for xUnit can be found here.

Needed NuGet Packages

For Reqnroll: Reqnroll.xUnit

For xUnit: xUnit

For Test Discovery & Execution:

• xunit.runner.visualstudio

• Microsoft.NET.Test.Sdk

Access ITestOutputHelper

The xUnit ITestOutputHelper is registered in the ScenarioContainer. You can get access to simply via getting it via
Context-Injection.

Example

using System;
using Reqnroll;

[Binding]
public class BindingClass
{

private Xunit.Abstractions.ITestOutputHelper _testOutputHelper;
public BindingClass(Xunit.Abstractions.ITestOutputHelper testOutputHelper)
{

_testOutputHelper = testOutputHelper;
}

[When(@"I do something")]
public void WhenIDoSomething()
{

_testOutputHelper.WriteLine("EB7C1291-2C44-417F-ABB7-A5154843BC7B");
}

}

130 Chapter 1. How to use the documentation

https://xunit.net/#documentation
https://www.nuget.org/packages/Reqnroll.xUnit/
https://www.nuget.org/packages/xunit/
https://www.nuget.org/packages/xunit.runner.visualstudio/
https://www.nuget.org/packages/Microsoft.NET.Test.Sdk


Reqnroll

1.9 IDE integrations

This part contains details of the following topics.

1.9.1 Reqnroll Visual Studio integration

Documentation is in progress

This documentation page is in progress. Please come back later or help contributing to it in out open-source GitHub
project.

1.10 Troubleshooting

1.10.1 Enabling Tracing

You can enable traces for Reqnroll. Once tracing is enabled, a new Reqnroll pane is added to the output window
showing diagnostic messages.

To enable tracing, select Tools | Options | Reqnroll from the menu in Visual Studio and set Enable Tracing to ‘True’.

1.11 Frequently Asked Questions

Documentation is in progress

This documentation page is in progress. Please come back later or help contributing to it in out open-source GitHub
project.

1.12 Samples

You can get a deeper understanding of Reqnroll by looking at sample and demo applications. The following list contains
a few sample and demo applications from the community.

Sample Reqnroll
version

Con-
tribu-
tors

Description

Re-
qOver-
flow

1.0.0 @gas-
parnagy

Shows different automation strategies for a realistic web application (Q&A
site): controller, REST API, Web UI (Selenium).

ReqPlay-
Wright

1.0.1 @Zsolt-
Dunai

Sample PlayWright test project that shows how to setup Reqnroll and Play-
Wright with modern principles.

1.9. IDE integrations 131

https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Reqnroll
https://github.com/reqnroll/Sample-ReqOverflow
https://github.com/reqnroll/Sample-ReqOverflow
https://github.com/reqnroll/Sample-ReqOverflow
https://github.com/gasparnagy
https://github.com/gasparnagy
https://github.com/ZsoltDunai/ReqnrollTestProjectWithPlayWright
https://github.com/ZsoltDunai/ReqnrollTestProjectWithPlayWright
https://github.com/ZsoltDunai
https://github.com/ZsoltDunai


Reqnroll

1.13 Support

For support options, please check the Support page of our website.

132 Chapter 1. How to use the documentation

https://reqnroll.net/support/

	How to use the documentation
	Quickstart
	Setup environment & get starting point
	Automating the first scenario
	Generate step definition snippets
	Prepare fields for the step definitions
	Automate steps
	Run tests and implement application code
	Add a new scenario and extend code
	Next Steps

	Installation & Setup
	Setup Reqnroll Project
	Choosing your test execution framework
	Setting up a Reqnroll project
	Creating a new Reqnroll project from Visual Studio
	Creating a new Reqnroll project from console
	Setup an existing test project


	Setup an IDE for Reqnroll
	Setup Visual Studio 2022
	Setup Visual Studio Code
	Setup Rider

	Configuration
	Use bindings from external projects
	Set the default feature file language
	Configuration file reference
	language
	generator
	runtime
	trace
	bindingAssemblies


	Compatibility
	Supported operating systems
	.NET Versions
	Visual Studio
	Test Execution Frameworks


	Guides
	How to change the test execution framework used by Reqnroll
	Migrating from SpecFlow
	Migrate with the Reqnroll SpecFlow Compatibility Package
	Step 1 - Change NuGet packages
	Step 2 - Review code compatibility
	Step 3 - Review SpecFlow App.config settings (if applicable)
	Step 4 - Review execution compatibility

	Migrate with namespace changes
	Step 1 - Change NuGet packages
	Step 2 - Replace namespaces
	Step 3 - Review code compatibility
	Step 4 - Migrate config settings
	Step 5 - Review execution compatibility

	Breaking changes since SpecFlow v3
	Cucumber Expressions support, compatibility of existing expressions
	Invalid expressions after upgrade
	Expression matching problems during test execution
	Cucumber Expression step definition skeletons

	Removed calling other steps with string
	Complete changelog of SpecFlow v4


	Using the Driver Pattern
	Example
	Further Resources

	Using Page Object Model
	Simple Implementation
	Implementation with Caching
	Implementation with Hierarchy
	Further resources


	Gherkin
	Feature Files
	Feature Language
	Gherkin Reference
	Keywords
	Feature
	Tags
	Descriptions
	Rule
	Scenario
	Steps
	Given
	When
	Then
	And, But
	*

	Background
	Tips for using Background
	Scenario Outline

	Step Arguments
	Doc Strings
	Data Tables

	Spoken Languages
	Gherkin Dialects
	Overview




	Automation Features
	Bindings
	Step Definitions
	Hooks
	Step Argument Transformations

	Step Definitions
	Supported Step Definition Attributes
	Other Attributes
	Step Definition Methods Rules
	Step Matching Styles & Rules
	Parameter Matching Rules
	Data Table or DocString Arguments

	Hooks
	Supported Hook Attributes
	Using Hooks with Constructor Injection
	Using Hooks with Parameter Injection
	Hook Execution Order
	Tag Scoping

	Step Argument Conversions
	Step Argument Transformation
	Standard Conversion

	Asynchronous Bindings
	Bindings from External Assemblies
	Configuration

	Cucumber Expressions
	Cucumber Expression basics
	Simple text
	Parameters
	Optionals, alternatives

	Using Cucumber Expressions with Reqnroll

	Scoped Bindings
	Scoping Rules
	Scope Examples
	Scoped BeforeScenario Hook
	Different Steps for Different Tags

	Scoping Tips & Tricks
	Beyond Scope

	DataTable Helpers
	CreateInstance<T>
	Using CreateInstance with a Class
	Using CreateInstance with ValueTuple

	CompareToInstance<T>
	CompareToSet<T>
	Comparing Sets When Order Matters

	Column naming
	Aliasing
	Extensions
	Configuration
	NullValueRetriever

	Using LINQ-based instance and set comparison

	Sharing Data between Bindings
	Instance Fields
	Context Injection
	ScenarioContext and FeatureContext
	Static Fields

	Context Injection
	Examples
	Advanced options
	Custom Dependency Injection Frameworks
	Consuming existing plugins
	Creating your own


	Scenario Context
	Accessing the ScenarioContext
	In Bindings
	In Hooks
	Before/AfterTestRun
	Before/AfterFeature
	Before/AfterScenario
	Before/AfterStep

	Migrating from ScenarioContext.Current

	ScenarioContext.Pending
	Storing data in the ScenarioContext
	ScenarioContext.ScenarioInfo
	ScenarioContext.CurrentScenarioBlock
	ScenarioContext.StepContext

	Feature Context
	Accessing the FeatureContext
	in Bindings
	in Hooks
	Before/AfterTestRun
	Before/AfterFeature
	Before/AfterScenario
	Before/AfterStep


	Storing data in the FeatureContext
	FeatureContext.FeatureInfo


	Execution Features
	Executing Reqnroll Scenarios
	Executing scenarios from console
	Executing scenarios from Visual Studio

	Executing Specific Scenarios
	Examples
	How to use the filters
	dotnet test
	vstest.console.exe
	Azure DevOps - Visual Studio Test task
	Azure DevOps - .NET Core task


	Mark Steps as Not Implemented
	Throwing the PendingStepException
	Default Message
	Custom Message

	Using ScenarioContext.Pending helper method

	Skipping Scenarios
	Example Code
	Limitations

	Test Results
	Test Passes
	Test Fails due to an Error
	Test Fails due to step binding problems
	Ignored Tests

	Parallel Execution
	Test Isolation Levels
	Parallel Scheduling Unit
	Running Reqnroll features in parallel with thread-level isolation
	Properties
	Requirements
	Execution Behavior
	NUnit Configuration
	MSTest Configuration
	xUnit Configuration
	Thread-safe ScenarioContext, FeatureContext and ScenarioStepContext
	Excluding Reqnroll features from parallel execution

	Running Reqnroll scenarios in parallel with process isolation
	Properties
	Requirements
	Execution Behavior


	Debugging
	Output API
	WriteLine(string text)
	AddAttachment(string filePath)

	Color Test Result Output
	Configuration
	Customization


	Extend Reqnroll
	Value Retrievers
	Extending with your own value retrievers
	Registering Custom ValueRetrievers

	Plugins
	Runtime plugins
	Create a runtime plugin
	RuntimePluginsEvents

	Generator plugins
	Create a generator plugin
	GeneratorPluginsEvents

	Combined Package with both plugins
	Tips & Tricks
	Building Plugins on non-Windows machines


	Decorators
	Example decorator
	Further read

	Available Containers
	Global Container
	Test Thread Container
	Feature Container
	Scenario Container


	Integrations
	Available Plugins
	Plugins for DI Container
	Other Plugins

	Autofac
	Introduction
	Step by step walkthrough of using Reqnroll.Autofac
	1. Install plugin from NuGet into your Reqnroll project.
	2. Create static methods somewhere in the Reqnroll project
	2.1 Optionally configure dependencies that need to be shared globally for all scenarios:
	2.2 Configure dependencies to be resolved each time for a scenario:
	2.3 Configure your dependencies for the scenario execution within either the two methods [GlobalDependencies] and [ScenarioDependencies] or the single [ScenarioDependencies] method.
	2.4 You also have to register the step definition classes in the [ScenarioDependencies] method, that you can do by either registering all public types from the Reqnroll project:
	2.5 or by registering all classes marked with the [Binding] attribute:

	3. A typical dependency builder method for [GlobalDependencies] with [ScenarioDependencies] probably looks like this:
	4. It is also possible to continue to use the legacy method as well, however this method is not compatible with global dependency registration and can only be used on it’s own like so:
	5. If you have an existing container, built and owned by your application under test, you can use that instead of letting Reqnroll manage your container


	F# Support
	Castle Windsor
	Introduction
	Step by step walkthrough of using Reqnroll.Windsor
	1. Install plugin
	2. Create static method
	3. Sample dependency builder method
	4. Reusing a container
	5. Customize binding behavior


	External Data Plugin
	Supported Data Sources
	Tags
	Examples
	CSV files
	Excel files

	Language Settings
	Json files


	MSTest
	Needed NuGet Packages
	Accessing TestContext
	Tags for TestClass Attributes
	Owner
	Priority
	WorkItem
	DeploymentItem
	Example 1 : Copy a file to the same directory as the deployed test assemblies
	Example 2 : Copy a file to a sub-directory relative to the deployment directory



	NUnit
	Needed NuGet Packages

	xUnit
	Needed NuGet Packages
	Access ITestOutputHelper
	Example



	IDE integrations
	Reqnroll Visual Studio integration

	Troubleshooting
	Enabling Tracing

	Frequently Asked Questions
	Samples
	Support


